Skip to main content

Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health

Part of the Handbook of Hydrocarbon and Lipid Microbiology book series (HHLM)

Abstract

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars and complex carbohydrates by gastrointestinal (GI) bacteria in man. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example, from lactate, succinate, and acetate. SCFA play a role in regulating transit of digesta through the GI tract, and in health by, for example, decreasing the risk of colon cancer (butyrate), and promoting satiety and reducing cholesterol load (propionate). Major butyrate-producing (Roseburia and Faecalibacterium spp.) and propionate-producing (Negativicutes and Bacteroides spp.) bacteria are among the most abundant microbes present in the large intestine. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids, the pathway depending on the individual. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinivorans. Enhancement of GI CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease and be protective of key health-promoting bacteria such as Faecalibacterium prausnitzii.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Bassaganya-Riera J, Hontecillus R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21:451–459

    CAS  CrossRef  PubMed  Google Scholar 

  • Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127:777–791

    CAS  CrossRef  PubMed  Google Scholar 

  • Bauman DE, Lock AL, Corl BA, Ip C, Salter AM, Parodi PM (2005) Milk fatty acids and human health: potential role of conjugated linoleic acid and trans fatty acids. In: Serjrsen K, Hvelplund T, Nielsen MO (eds) Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress. Wageningen Academic Publishers, Wageningen, pp 529–561

    Google Scholar 

  • Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73:6526–6533

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Belury MA (2002) Dietary conjugated linoleic acid in health: physiological effects and mechanisms of action. Annu Rev Nutr 22:505–531

    CAS  CrossRef  PubMed  Google Scholar 

  • Bergman NE (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    CAS  CrossRef  PubMed  Google Scholar 

  • Bonanome A, Grundy SM (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 318:1244–1248

    CAS  CrossRef  PubMed  Google Scholar 

  • Byrne CS, Chambers ES, Alhabeeb H, Chhina N, Morrison DJ, Preston T, Tedford C, Fitzpatrick J, Irani C, Busza A, Garcia-Perez I, Fountana S, Holmes E, Goldstone AP, Frost GS (2016) Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods. Am J Clin Nutr 104:5–14

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Canfora EE, Jocken JW, Blaak EE (2015) Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 11:577–591

    CAS  CrossRef  PubMed  Google Scholar 

  • Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J (2005) Effect of orlistat on weight and body composition in obese adolescents – a randomized controlled trial. J Am Med Assoc 293:2873–2883

    CAS  CrossRef  Google Scholar 

  • Chaplin A, Parra P, Serra F, Palou A (2015) Conjugated linoleic acid supplementation under a high-fat diet modulates stomach protein expression and intestinal microbiota in adult mice. PLoS One 10:e0125091

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62:95–99

    CAS  CrossRef  PubMed  Google Scholar 

  • Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94:138–145

    CAS  CrossRef  PubMed  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in the human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25:49–62

    CAS  CrossRef  PubMed  Google Scholar 

  • De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G (2014) Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96

    CrossRef  CAS  PubMed  Google Scholar 

  • De Weirdt R, Coenen E, Vlaeminck B, Fievez V, Van den Abbeele P, Van de Wiele T (2013) A simulated mucus layer protects Lactobacillus reuteri from the inhibitory effects of linoleic acid. Benefic Microbes 4:299–312

    CrossRef  CAS  Google Scholar 

  • De Weirdt R, Hernandez-Sanabria E, Fievez V, Mees E, Geirnaert A, Van HF, Vilchez-Vargas R, Van den Abbeele P, Jauregui R, Pieper DH, Vlaeminck B, Van de Wiele T (2017) Mucosa-associated biohydrogenating microbes protect the simulated colon microbiome from stress associated with high concentrations of polyunsaturated fat. Environ Microbiol 19:722–739

    CrossRef  CAS  PubMed  Google Scholar 

  • Devillard E, McIntosh FM, Duncan SM, Wallace RJ (2007) Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189: 2566–2570

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Devillard E, McIntosh FM, Paillard D, Thomas NA, Shingfield KJ, Wallace RJ (2009) Differences between human subjects in the composition of the faecal bacterial community and faecal metabolism of linoleic acid. Microbiology 155:513–520

    CAS  CrossRef  PubMed  Google Scholar 

  • Druart C, Neyrinck AM, Vlaeminck B, Fievez V, Cani PD, Delzenne NM (2014) Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One 9:e87560

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004a) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91:915–923

    CAS  CrossRef  PubMed  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004b) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56:2437–2441

    CAS  CrossRef  PubMed  Google Scholar 

  • Eyssen H, Parmentier G (1974) Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr 27:1329–1340

    CAS  CrossRef  PubMed  Google Scholar 

  • Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72:7835–7841

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Flint HJ (2006) Prokaryote diversity in the human GI tract. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Society for General Microbiology symposium no. 66, Warwick. Cambridge University Press, Cambridge, pp 65–90

    CrossRef  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131

    CAS  CrossRef  PubMed  Google Scholar 

  • Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S, Brody L, Anastasovska J, Ghourab S, Hankir M, Zhang S, Carling D, Swann JR, Gibson G, Viardot A, Morrison D, Thomas LE, Bell JD (2014) The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat Commun 5:3611

    CAS  CrossRef  PubMed  Google Scholar 

  • Fuke G, Nornberg JL (2017) Systematic evaluation on the effectiveness of conjugated linoleic acid in human health. Crit Rev Food Sci Nutr 57:1–7

    CAS  CrossRef  PubMed  Google Scholar 

  • Ge H, Li X, Weiszmann J, Wang P, Baribault H, Chen JL, Tian H, Li Y (2008) Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149:4519–4526

    CAS  CrossRef  PubMed  Google Scholar 

  • Gibson SAW, Mcfarlan C, Hay S, Macfarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55:679–683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    CAS  CrossRef  PubMed  Google Scholar 

  • Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 382–426

    CrossRef  Google Scholar 

  • Hauptman J, Lucas C, Boldrin MN, Collins H, Segal KR (2000) Orlistat in the long-term treatment of obesity in primary care settings. Arch Fam Med 9:160–167

    CAS  CrossRef  PubMed  Google Scholar 

  • Hildebrandt MA, Hoffmann C, Sherrill-Mix SA, Keilbaugh SA, Hamady M, Chen YY, Knight R, Ahima RS, Bushman F, Wu GD (2009) High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137:1716–1724

    CAS  CrossRef  PubMed  Google Scholar 

  • Hove H, Mortensen PB (1995) Influence of intestinal inflammation (IBD) and small and large bowel length on fecal short-chain fatty acids and lactate. Dig Dis Sci 40:1372–1380

    CAS  CrossRef  PubMed  Google Scholar 

  • Hove H, Nordgaard-Andersen I, Mortensen PB (1994) Faecal dl-lactate concentration in 100 gastrointestinal patients. Scand J Gastroenterol 29:255–259

    CAS  CrossRef  PubMed  Google Scholar 

  • Hove H, Holtug K, Jeppesen PB, Mortensen PB (1995) Butyrate absorption and lactate secretion in ulcerative colitis. Dis Colon Rectum 38:519–525

    CAS  CrossRef  PubMed  Google Scholar 

  • Howard FAC, Henderson C (1999) Hydrogenation of polyunsaturated fatty acids by human colonic bacteria. Lett Appl Microbiol 29:193–196

    CAS  CrossRef  PubMed  Google Scholar 

  • Hoyles L (2009) In vitro examination of the effect of Orlistat on the ability of the faecal microbiota to utilize dietary lipids. PhD thesis, University of Reading, United Kingdom

    Google Scholar 

  • Hoyles L, Wallace RJ (2010) Gastrointestinal tract: intestinal fatty acid metabolism and implications for health. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 3119–3132

    CrossRef  Google Scholar 

  • Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC, McArthur S (2018) Microbiome–host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6:55

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hylemon PB, Harris SC, Ridlon JM (2018) Metabolism of hydrogen gases and bile acids in the gut microbiome. FEBS Lett. https://doi.org/10.1002/1873-3468.13064

    CAS  CrossRef  PubMed  Google Scholar 

  • James AT, Webb JPW, Kellock TD (1961) The occurrence of unusual fatty acids in faecal lipids from human beings with normal and abnormal fat absorption. Biochem J 78:333–339

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kamlage B, Hartmann L, Gruhl B, Blaut M (1999) Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129:2212–2217

    CAS  CrossRef  PubMed  Google Scholar 

  • Kamlage B, Hartmann L, Gruhl B, Blaut M (2000) Linoleic acid conjugation by human intestinal microorganisms is inhibited by glucose and other substrates in vitro and in gnotobiotic rats. J Nutr 130:2036–2039

    CAS  CrossRef  PubMed  Google Scholar 

  • Kemp MQ, Jeffy BD, Romagnolo DF (2003) Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr 133:3670–3677

    CAS  CrossRef  PubMed  Google Scholar 

  • Khedkar CD, Ouwehand AC (2006) Modifying the gastrointestinal microbiota with probiotics. In: Ouwehand A, Vaughan EE (eds) Gastrointestinal microbiology. Taylor & Francis Ltd., New York, pp 315–333

    CrossRef  Google Scholar 

  • Kim CH (2018) Immune regulation by microbiome metabolites. Immunology. https://doi.org/10.1111/imm.12930

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Kim YS, Spritz N (1968) Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops. J Lipid Res 9:487–491

    CAS  PubMed  Google Scholar 

  • Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, Ohue-Kitano R, Jheng HF, Takahashi N, Kano Y, Yu R, Kishino S, Ogawa J, Uchida K, Yamazaki J, Tominaga M, Kawada T, Goto T (2017) 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J 31:5036–5048

    CAS  CrossRef  PubMed  Google Scholar 

  • Kishino S, Takeuchi M, Park SB, Hirata A, Kitamura N, Kunisawa J, Kiyono H, Iwamoto R, Isobe Y, Arita M, Arai H, Ueda K, Shima J, Takahashi S, Yokozeki K, Shimizu S, Ogawa J (2013) Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition. Proc Natl Acad Sci USA 110:17808–17813

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhu Y, Zhao F, Song S, Li Y, Xu X, Zhou G, Li C (2017) Fish oil, lard and soybean oil differentially shape gut microbiota of middle-aged rats. Sci Rep 7:826

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41

    CAS  CrossRef  PubMed  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186:2099–2106

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Macfarlane GT, Gibson GR (1995) Microbiological aspects of the production of short-chain fatty acids in the large bowel. In: Cummings JH, Rombeau JL, Sakata T (eds) Physiological and chemical aspects of short-chain fatty acids. Cambridge University Press, Cambridge, pp 87–105

    Google Scholar 

  • Macfarlane GT, Gibson GR (1997) Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In: Mackie RI, White BA (eds) Gastrointestinal microbiology, vol. 1. Gastrointestinal ecosystems and fermentations. Chapman & Hall, New York, pp 269–318

    Google Scholar 

  • Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187

    CAS  CrossRef  PubMed  Google Scholar 

  • Maia MRG, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie Van Leeuwenhoek 91:303–314

    CAS  CrossRef  PubMed  Google Scholar 

  • Malhotra SL (1982) Faecal urobilinogen levels and pH of stools in population groups with different incidence of cancer of the colon, and their possible role in aetiology. J R Soc Med 75:709–714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin HM, Rhodes JM (2000) Bacteria and inflammatory bowel disease. Curr Opin Inflamm Dis 13:503–509

    CAS  CrossRef  Google Scholar 

  • McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ (2009) Mechanism of conjugated linoleic acid and vaccenic acid formation in human fecal suspensions and pure cultures of intestinal bacteria. Microbiology 155:285–294

    CAS  CrossRef  PubMed  Google Scholar 

  • Miller A, McGrath E, Stanton C, Devery R (2003) Vaccenic acid (t11-18:1) is converted to c9,t11-CLA in MCF-7 and SW480 cancer cells. Lipids 38:623–632

    CAS  CrossRef  PubMed  Google Scholar 

  • Miyamoto J, Mizukure T, Park SB, Kishino S, Kimura I, Hirano K, Bergamo P, Rossi M, Suzuki T, Arita M, Ogawa J, Tanabe S (2015) A gut microbial metabolite of linoleic acid, 10-hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK pathway. J Biol Chem 290:2902–2918

    CAS  CrossRef  PubMed  Google Scholar 

  • Mosley EE, McGuire MK, Williams JE, McGuire MA (2006) cis-9,trans-11 conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J Nutr 136:2297–2301

    CAS  CrossRef  PubMed  Google Scholar 

  • Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De BF, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6:e20944

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nichenametla SN, South EH, Exon JH (2004) Interaction of conjugated linoleic acid, sphingomyelin, and butyrate on formation of colonic aberrant crypt foci and immune function in rats. J Toxicol Environ Health A 67:469–481

    CAS  CrossRef  PubMed  Google Scholar 

  • O’Connor EB, Barrett E, Fitzgerald G, Hill C, Stanton C, Ross RP (2005) Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. In: Tamine A (ed) Probiotic dairy products. Blackwell Publishing Ltd., Oxford, pp 167–194

    Google Scholar 

  • O’Shea EF, Cotter PD, Stanton C, Ross RP, Hill C (2012) Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int J Food Microbiol 152:189–205

    CrossRef  CAS  PubMed  Google Scholar 

  • Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100:355–364

    CAS  CrossRef  PubMed  Google Scholar 

  • Ohashi Y, Igarashi T, Kumazawa F, Fujisawa T (2007) Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 26:37–40

    CAS  CrossRef  Google Scholar 

  • Paillard D, McKain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, McEwan NR, Kopecny J, Vercoe PE, Louis P, Wallace RJ (2007) Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie Van Leeuwenhoek 91:417–422

    CAS  CrossRef  PubMed  Google Scholar 

  • Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79:1132S–1136S

    CAS  CrossRef  PubMed  Google Scholar 

  • Pearson JR (1973) Alteration of dietary fat by human intestinal bacteria. Proc Nutr Soc 32:8A–9A

    CAS  PubMed  Google Scholar 

  • Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in bifidobacteria. Genes Nutr 6:285–306

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88:1056–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pouteau E, Ngyuen P, Ballèvre O, Krempf M (2003) Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc Nutr Soc 62:87–93

    CAS  CrossRef  PubMed  Google Scholar 

  • Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li JH, Xu JM, Li SC, Li DF, Cao JJ, Wang B, Liang HQ, Zheng HS, Xie YL, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu HM, Yu C, Li ST, Jian M, Zhou Y, Li YR, Zhang XQ, Li SG, Qin N, Yang HM, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, Newgard CB, Gordon JI (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285:22082–22090

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Rhee SK, Kayani AJ, Ciszek A, Brenna JT (1997) Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. Am J Clin Nutr 65:451–458

    CAS  CrossRef  PubMed  Google Scholar 

  • Robert C, Chassard C, Lawson PA, Bernalier-Donadille A (2007) Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57:1516–1520

    CrossRef  PubMed  Google Scholar 

  • Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Roediger WE (1990) The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 33:858–862

    CAS  CrossRef  PubMed  Google Scholar 

  • Russell JB, Wallace RJ (1997) Energy yielding and consuming reactions. In: Hobson PN, Stewart CS (eds) The rumen microbial ecosystem. Chapman & Hall, London, pp 185–215

    Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(suppl. 1):S147–S171

    CAS  CrossRef  PubMed  Google Scholar 

  • Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH (2013) The influence of diet on the gut microbiota. Pharmacol Res 69:52–60

    CAS  CrossRef  PubMed  Google Scholar 

  • Thomas PJ (1972) Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro. Gastroenterology 62:430–435

    CAS  PubMed  Google Scholar 

  • Tiruppathi K, Balasubramanian KA, Hill PG, Mathan VI (1983) Faecal free fatty acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases. Gut 24:300–305

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Todesco T, Rao AV, Bosello O, Jenkins DJA (1991) Propionate lowers blood glucose and lipid metabolism in healthy subjects. Am J Clin Nutr 54:860–865

    CAS  CrossRef  PubMed  Google Scholar 

  • Tricon S, Yaqoob P (2006) Conjugated linoleic acid and human health: a critical evaluation of the evidence. Curr Opin Clin Nutr Metab Care 9:105–110

    CAS  CrossRef  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    CrossRef  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    CAS  CrossRef  PubMed  Google Scholar 

  • Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, Griinari JM (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76:504–510

    CAS  CrossRef  PubMed  Google Scholar 

  • van Nuenen MH, Venema K, van der Woude JC, Kuipers EJ (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig Dis Sci 49:485–491

    CrossRef  PubMed  Google Scholar 

  • Venter CS, Vorster HH, Cummings JH (1990) Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 85:549–553

    CAS  PubMed  Google Scholar 

  • Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: are they beneficial or detrimental to health. Prog Lipid Res 43:553–557

    CAS  CrossRef  PubMed  Google Scholar 

  • Walker ARP, Walker BF, Walker AJ (1986) Fecal pH, dietary fibre intake, and proneness to colon cancer in four South African populations. Br J Cancer 53:489–495

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71:3692–3700

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Wiggins HS, Pearson JR, Walker JG, Russell RI, Kellock TD (1974) Incidence and significance of faecal hydroxystearic acid in alimentary disease. Gut 15:614–621

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62:107–115

    CAS  CrossRef  PubMed  Google Scholar 

  • Xiong Y, Miyamoto B, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101:1045–1050

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley Hoyles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Hoyles, L., John Wallace, R. (2019). Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_31-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_31-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine & Life SciencesReference Module Biomedical and Life Sciences