Skip to main content

Tuning Activity of Antimicrobial Peptides by Lipidation

  • Living reference work entry
  • First Online:
Book cover Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids

Part of the book series: Handbook of Hydrocarbon and Lipid Microbiology ((HHLM))

  • 252 Accesses

Abstract

Antimicrobial peptides (AMPs) are amino acid-based bioactive molecules that specifically target microbes. As such, they are a potent class of antibiotics, especially against bacterial infections. Naturally occurring AMPs are usually too long to be considered for therapeutic applications. To solve this, short sequences that mimic the activity of AMPs are designed. However, such endeavors are often accompanied with a reduction in antibacterial activity. To counter this, lipophilic molecules can be attached that function as a lipid anchor and target the short sequence to the bacterial membrane. For a range of short AMPs, this strategy has proven to lead to more active constructs. Although these lipidated short AMPs often work as complex target specific surfactants, more delicate modes of action that do not deviate too much from the nonlipidated counterparts are also known. This is readily observed by the large differences in activities that are detected when alterations in the lipid chain length and chirality of the amino acids residues are implemented. It is not uncommon to see that inactive or poorly active short AMPs can be turned into potent antibacterial agents. Importantly, selectivity of the short lipidated AMPs (lipoAMPs) for the bacterial membrane can be enhanced by alteration of the amino acid chirality. This strategy has led to lipoAMPs with submicromolar activities; in fact, activities that rival that of vancomycin have been observed for several short AMPs. Future research needs to determine (i) the effect of lipidation on the formation of lipid rafts in the bacterial membrane, (ii) if structural complications like branched lipids or chiral substituents on the lipid chain can be used to further increase the activity and selectivity of the conjugates, and (iii) if additional functionalities other than a membrane-anchoring ability can be bestowed on the lipid chain, e.g., redox activity or scavenger for small molecular components that traverse the lipid membrane. The interplay between degree of lipophilicity and the chirality of the amino acids of the AMP also needs further exploration, especially to see if more potent and selective (lipo)AMPs can be obtained that can be applied systemically. It may also be advisable to measure the most potent lipoAMPs in a centralized facility in order to obtain objective and comparable antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

Download references

Acknowledgments

I thank my colleagues from my period in Germany, in alphabetical order: Julia Bandow, Heike Brötz-Österhelt, Nils Metzler-Nolte, Hans-Georg Sahl, and Michaela Wenzel. Furthermore, I thank my current colleagues at the Wageningen University for their fruitful discussions and highly inspirational scientific working environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bauke Albada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Albada, B. (2019). Tuning Activity of Antimicrobial Peptides by Lipidation. In: Goldfine, H. (eds) Health Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology . Springer, Cham. https://doi.org/10.1007/978-3-319-72473-7_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72473-7_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72473-7

  • Online ISBN: 978-3-319-72473-7

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics