Skip to main content

Porous Silicon Formation by Mechanical Means

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

In this chapter a mechanical method of porous silicon formation is described. By applying high-energy ball milling to polycrystalline silicon powder or single crystalline silicon wafers, highly dispersed and nanocrystalline silicon powders are produced. Pressing and sintering then lead to a porous matrix. The macroporous structures made in this way can then be permeated by meso- and micropores. The sinters have isotropic character of the pore distribution and morphology; this method is not limited by the wafer dimensions, and it is possible to make large-scale porous bodies, which is an advantage in comparison to lithographic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barraclough KG, Loni A, Caffull E, Canham LT (2007) Cold compaction of silicon powders without a binding agent. Mater Lett 61:485–487

    Article  CAS  Google Scholar 

  • Benjamin JS (1970) Dispersion strengthened superalloys by mechanical alloying. Metal Trans 1:2943–2951

    CAS  Google Scholar 

  • Bollero A, Gutfleisch O, Kubis M, Müller K-H, Schultz L (2000) Hydrogen disproportionation by reactive milling and recombination of Nd2(Fe1-xCox)14B alloys. Acta Mater 48:4929–4934

    Article  CAS  Google Scholar 

  • Bychto L, Balaguer M, Pastor E, Chirvony V, Matveeva E (2008) Influence of preparation and storage conditions on photoluminescence of porous silicon powder with embedded Si nanocrystals. J Nanopart Res 10:1241–1249

    Article  CAS  Google Scholar 

  • Chakravarty D, Sarada BV, Chandrasekhar SB, Saravanan K, Rao TN (2011) A novel method of fabricating porous silicon. Mater Sci Eng A 528:7831–7834

    Article  CAS  Google Scholar 

  • Christophersen M, Merz P, Quenzer J, Carstensen J, Föll H (2001) Deep electrochemical trench etching with organic hydrofluoric electrolytes. Sens Actuator A 88:241–246

    Article  CAS  Google Scholar 

  • Coblenz WS (1990) The physics and chemistry of the sintering of silicon. J Mater Sci 25:2754–2764

    Article  CAS  Google Scholar 

  • De Castro CL, Mitchell BS (2002) Nanoparticles from mechanical attrition. In: Baraton M-I (ed) Synthesis, functionalization and surface treatment of nanoparticles. American Scientific Publisher, Stevenson Ranch

    Google Scholar 

  • Diaz-Guerra C, Montone A, Piqueras J, Cardellini F (2002) Structural and cathodoluminescence study of mechanically milled silicon. Semicond Sci Technol 17:77–82

    Article  CAS  Google Scholar 

  • Gaffet E, Harmelin M (1990) Crystal-amorphous phase transition induced by ball-milling in silicon. J Less Common Met 157:201–222

    Article  CAS  Google Scholar 

  • Huang JY, Yasuda H, Mori H (1999) Deformation-induced amorphization in ball-milled silicon. Philos Mag Lett 79:305–314

    Article  CAS  Google Scholar 

  • Jakubowicz J, Jungblut H, Lewerenz HJ (2003) Initial surface topography changes during divalent dissolution of silicon electrodes. Electrochim Acta 49:137–146

    Article  CAS  Google Scholar 

  • Jakubowicz J, Smardz K, Smardz L (2007) Characterization of porous silicon prepared by powder technology. Physica E 38:139–143

    Article  CAS  Google Scholar 

  • Lang W, Steiner P, Sandmaier H (1995) Porous silicon: a novel material for microsystems. Sens Actuator A 51:31–36

    Article  CAS  Google Scholar 

  • Möller H-J, Welsch G (1985) Sintering of ultrafine silicon powder. J Am Ceram Soc 68(6):320–325

    Article  Google Scholar 

  • Odo EA, Britton DT, Gonfa GG, Harting M (2012) Structure and characterization of silicon nanoparticles produced using a vibratory disc mill. Afr Rev Phys 7:45–56

    Google Scholar 

  • Parkhutik V (1999) Porous silicon – mechanism of growth and applications. Sol State Electron 43:1121–1141

    Article  CAS  Google Scholar 

  • Pawlak BJ, Gregorkiewicz T, Ammerlaan CAJ, Takkenberg W, Tichelaar FD, Alkemade PFA (2001) Experimental investigation of band structure modification in silicon nanocrystals. Phys Rev B 64:115308

    Article  CAS  Google Scholar 

  • Russo L, Colangelo F, Cioffi R, Rea I, De Stefano L (2011) A mechanochemical approach to porous silicon nanoparticles fabrication. Material 4:1023–1033

    Article  CAS  Google Scholar 

  • Saffie R, Barraclough KG, Lau Ch-H, Torabi-Pour N, Canham LT, Loni A (2005) Silicon structure. International Patent no WO2005/113467

    Google Scholar 

  • Sailor MJ (2011) Porous silicon in practice, preparation, characterization and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Santanav CJ, Jones KS (1996) The effects of processing conditions on the density and microstructure of hot-pressed silicon powder. J Mater Sci 31:4985–4990

    Article  Google Scholar 

  • Shen TD, Koch CC, McCormick TL, Nemanich RJ, Huang JY, Huang JG (1995) The structure and property characteristics of amorphous/nanocrystalline silicon produced by ball milling. J Mater Res 10:139–148

    Article  CAS  Google Scholar 

  • Stevulova N, Sepelak V, Tkacova K (1997) Mechanically induced transformation in silicon. Acta Montan Slovaca 3:261–265

    Google Scholar 

  • Svrcek V, Rehspringeb J-L, Gaffec E, Slaoua A, Muller J-C (2005) Unaggregated silicon nanocrystals obtained by ball milling. J Cryst Growth 275:589–597

    Article  CAS  Google Scholar 

  • Unifantowicz P, Vaucher S, Lewandowska M, Kurzydlowski KJ (2008) Structural changes of silicon upon high-energy milling investigated by Raman spectroscopy. J Phys Condens Matter 20:025205

    Article  CAS  Google Scholar 

  • van Buuren T, Tiedje T, Patitsas SN (1994) Effect of thermal annealing on the conduction- and valence-band quantum shifts in porous silicon. Phys Rev B50:2719–2722

    Article  Google Scholar 

  • Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2(3):22–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslaw Jakubowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jakubowicz, J. (2018). Porous Silicon Formation by Mechanical Means. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_9

Download citation

Publish with us

Policies and ethics