Abstract
The creation of conducting polymer nanostructures and a wide variety of other material nanostructures/nanocomposites are described and surveyed, respectively. The focus is on PSi (porous silicon) template advantages for polymer nanostructure tuning, pore-filling phenomenon, mechanism of polymerization, and selective removal of PSi to release the polymeric structures. The interaction of pyrrole monomers, as a case study, on the entire surface of PSi under both galvanostatic and potentiostatic deposition modes is presented with discussion on the processing issues associated with the electrochemical deposition process inside the pores. Examples of free-standing conductive polymer structures formed by selective dissolution of PSi are provided. However, this updated and expanded review also highlights the wide range of materials and associated applications now being investigated for porous silicon templates.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akundy GS, Iroh JO (2001) Polypyrrole coatings on aluminum: synthesis and characterization. Polymer 42:9665–9669
Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S (2007) Porous silicon templates for electrodeposition of nanostructures. Appl Phys A Mater Sci Process 87:773–780
Bhushan B (2004) Springer handbook of nanotechnology. Springer, Berlin/Heidelberg
Bouzourâa MB, En Naciri A, Moadhen A, Rinnert H, Guendouz M, Battie Y, Chaillou A, Zaïbi MA, Oueslati M (2016) Effects of silicon porosity on physical properties of ZnO films. Mater Chem Phys 175:233–240
Carter R, Ejorh D, Share K, Cohn AP, Douglas A, Muralidharan N, Tovar TM, Pint CL (2016) Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium-sulfur batteries. J Power Sources 330:70–77
Chakarvarti SK, Vetter J (1998) Template synthesis – a membrane based technology for generation of nano-micro materials: a review. Radiat Meas 29:149–159
Chen X, Steinhart M, Gösele U (2006) Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Adv Mater 18:2135–2156
Chen X, Lin P, Zhang K, Baumgart H, Geist B, Kochergin V (2016) Seebeck coefficient enhancement of ALD PbTe/PbSe nanolaminate structures deposited inside porous silicon template. ECS J Solid State Sci Technol 5(9):P503–P508
Chourou ML, Fukami K, Sakka T, Ogata YH (2011) Gold electrodeposition into porous silicon: comparison between meso- and macroporous silicon. Phys Status Solidi C 8(6):1783–1786
Douglas A, Muralidharan N, Carter R, Share K, Pint CL (2016) Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale 8:7384–7390
Errien N, Froyer G, Louarn P (2005) Electrochemical growth of poly(3-dodecylthiophene) into porous silicon layers. Retho Synth Metals 150:255–258
Fan J, Wan M, Zhu D (1998) Studies on the rectifying effect of the heterojunction between porous silicon and water-soluble copolymer of polyaniline. Synth Metals 95:119–124
Fukami K, Harraz FA, Yamauchi T, Sakka T, Ogata YH (2008) Fine-tuning in size and surface morphology of rod-shaped polypyrrole using porous silicon as template. Electrochem Commun 10:56–60
Greiner A, Wendorff J (2008) Functional self-assembled nanofibers by electrospinning. In: Shimizu T (ed) Self-assembled nanomaterials I. Springer-Verlag, Berlin/Heidelberg, pp 107–171
Grigoras K, Keskinen J, Grönberg L, Yli-Rantala E, Laakso S, Välimäki H, Kauranen P, Ahopelto J, Prunnila M (2016) Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26:340–345
Guo D-J, Zhang H, Li J-B, Fang S-M, Dai Z-D, Tan W (2013) Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold. J Mater Chem B 1:379–386
Halliday DP, Holland ER, Eggleston JM, Adams PN, Cox SE, Monkman AP (1996) Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films 276:299–302
Harraz FA (2006) Electrochemical polymerization of pyrrole into nanostructured p-type porous silicon. J Electrochem Soc 153(5):C349–C356
Harraz FA (2011) Impregnation of porous silicon with conducting polymers. Phys Status Solidi C 8(6):1883–1887
Harraz FA (2013) Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template. Appl Sur Sci 287:203–210
Harraz FA (2014) Electrochemical formation of a novel porous silicon/polypyrrole hybrid structure with enhanced electrical and optical characteristics. J Electroanal Chem 729:68–74
Harraz FA, Salem AM (2013) Enhancement of porous silicon photoluminescence by chemical and electrochemical infiltration of conducting polymers. Scripta Mater 68:683–686
Harraz FA, Kamada K, Sasano J, Izuo S, Sakka T, Ogata YH (2005) Pore filling of macropores prepared in p-type silicon by copper deposition. Phys Status Solidi A 202(8):1683–1687
Harraz FA, Salim MS, Sakka T, Ogata YH (2008a) Hybrid nanostructure of polypyrrole and porous silicon prepared by galvanostatic technique. Electrochim Acta 53:3734–3740
Harraz FA, El-Sheikh SM, Sakka T, Ogata YH (2008b) Cylindrical pore arrays in silicon with intermediate nano-sizes: a template for nanofabrication and multilayer applications. Electrochim Acta 53:6444–6451
Harraz FA, Salem AM, Mohamed BA, Kandil A, Ibrahim IA (2013) Electrochemically deposited cobalt/platinum (Co/Pt) film into porous silicon: structural investigation and magnetic properties. Appl Surf Sci 264:391–398
Harraz FA, Ismail AA, Al-Sayari SA, Hajry AA, Assiri MS (2015) Material deposition into porous silicon templates. ECS Trans 69(2):23–28
Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445
Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087
Johnson SA, Ollivier PJ, Mallouk TE (1999) Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283:963–965
Kobayashi K, Harraz FA, Izuo S, Sakka T, Ogata YH (2006) Microrod and microtube formation by electrodeposition of metal into ordered macropores prepared in p-type silicon. J Electrochem Soc 153(4):C218–C222
Lehmann V (1993) The physics of macropore formation in low-doped n-type silicon. J Electrochem Soc 140:2836–2843
Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimization of a polypyrrole based actuator. Synth Met 85:1419–1420
Luz-Merino S De La, Calixto ME, Méndez-Blas A, MarÃ-Soucase B (2016) Electrodeposition and characterization of one-dimensional CuInSe2 nanostructures in mesoporous silicon templates. Mesoporous Biomater 3:67–75
Li J, Sailor MJ (2014) Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon. Biosens Bioelectron 55:372–378
Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299(5615):2045–2047
Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966
Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746
Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468
Metke T, Westover AS, Carter R, Oakes L, Douglas A, Pint CL (2016) Particulate-free porous silicon networks for efficient capacitive deionization water desalination. Nature Sci Reports 6:24680
Mishra JK, Bhunia S, Banerjee S, Banerji P (2008) Photoluminescence studies on porous silicon/polymer heterostructure. J Lumin 128:1169–1174
Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10(10):2950–2963
Moreno JD, Marcos ML, Agulló-Rueda F, Guerrero-Lemus R, MartÃn-Palma RJ, MartÃnez-Duart JM, González-Velasco J (1999) A galvanostatic study of the electrodeposition of polypyrrole into porous silicon. Thin Solid Films 348:152–156
Murzina TV, Sychev FY, Kolmychek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120
Nahor A, Berger O, Bardavid Y, Toker G, Tamar Y, Reiss L, Asscher M, Yitzchaik S, Sa’ar A (2011) Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Phys Status Solidi C 8(6):1908–1912
Nguyen TP, Le Rendu P, Lakéhal M, de Kok M, Vanderzande D, Bulou A, Bardeau JP, Joubert P (2003) Filling porous silicon pores with poly(p-phenylenevinylene). Phys Status Solidi A 197:232–235
Ogata YH, Koyama A, Harraz FA, Salem MS, Sakka T (2007) Electrochemical formation of porous silicon with medium sized-pores. Electrochemistry 75:270–272
Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701
Rumpf K, Granitzer P, Poelt P, Allbu M (2011) Double-sided porous silicon template for metal deposition. Phys Status Solidi C 8(6):1808–1811
Salem AMS, Harraz FA, El-Sheikh SM, Hafez HS, Ibrahim IA, Abdel-Mottaleb MSA (2015) Enhanced electrical and luminescent performance of a porous silicon/MEH-PPV nanohybrid synthesized by anodization and repeated spin coating. RSC Adv 5:99892–99898
Schultze JW, Jung KG (1995) Regular nanostructured systems formed electrochemically: deposition of electroactive polybithiophene into porous silicon. Electrochim Acta 40:1369–1383
Shimizu T (2008) Self-assembled nanomaterials I: nanofibers, vol 219, Advances in polymer science. Springer, Berlin
Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997–1997
Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923
Tondare VN, Gierhart BC, Howitt DG, Smith RL, Chen SJ, Collins SD (2008) An electron microscopy investigation of the structure of porous silicon by oxide replication. Nanotechnology 19:225301, 4Â pp
Vrkoslav V, JelÃnek I, Broncová G, Král V, Dian J (2006) Polypyrrole-functionalized porous silicon for gas sensing applications. Mater Sci Eng C 26:1072–1076
Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319
Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11(10):2813–2826
Zhang X, Tu KN, Xie YH, Tung CH (2006) High aspect ratio nickel structures fabricated by electrochemical replication of hydrofluoric acid etched silicon. Electrochem Solid State Lett 9(9):C150–C152
Zhao L, Steinhart M, Yosef M, Lee SK, Geppert T, Pippel E, Scholz R, Gösele U, Schlecht S (2005a) Lithium niobate microtubes within ordered macroporous silicon by template thermolysis of a single source precursor. Chem Mater 17:3–5
Zhao L, Yosef M, Steinhart M, Göring P, Hofmeister H, Gösele U, Schlecht S (2005b) Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2. Angew Chem Int Ed 45:311–315
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Harraz, F. . (2018). Porous Silicon and Templating. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_63
Download citation
DOI: https://doi.org/10.1007/978-3-319-71381-6_63
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71379-3
Online ISBN: 978-3-319-71381-6
eBook Packages: Chemistry and Materials ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics