Skip to main content

Porous Silicon and Templating

  • Reference work entry
  • First Online:
Handbook of Porous Silicon
  • 232 Accesses

Abstract

The creation of conducting polymer nanostructures and a wide variety of other material nanostructures/nanocomposites are described and surveyed, respectively. The focus is on PSi (porous silicon) template advantages for polymer nanostructure tuning, pore-filling phenomenon, mechanism of polymerization, and selective removal of PSi to release the polymeric structures. The interaction of pyrrole monomers, as a case study, on the entire surface of PSi under both galvanostatic and potentiostatic deposition modes is presented with discussion on the processing issues associated with the electrochemical deposition process inside the pores. Examples of free-standing conductive polymer structures formed by selective dissolution of PSi are provided. However, this updated and expanded review also highlights the wide range of materials and associated applications now being investigated for porous silicon templates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akundy GS, Iroh JO (2001) Polypyrrole coatings on aluminum: synthesis and characterization. Polymer 42:9665–9669

    Article  CAS  Google Scholar 

  • Aravamudhan S, Luongo K, Poddar P, Srikanth H, Bhansali S (2007) Porous silicon templates for electrodeposition of nanostructures. Appl Phys A Mater Sci Process 87:773–780

    Article  CAS  Google Scholar 

  • Bhushan B (2004) Springer handbook of nanotechnology. Springer, Berlin/Heidelberg

    Google Scholar 

  • Bouzourâa MB, En Naciri A, Moadhen A, Rinnert H, Guendouz M, Battie Y, Chaillou A, Zaïbi MA, Oueslati M (2016) Effects of silicon porosity on physical properties of ZnO films. Mater Chem Phys 175:233–240

    Article  CAS  Google Scholar 

  • Carter R, Ejorh D, Share K, Cohn AP, Douglas A, Muralidharan N, Tovar TM, Pint CL (2016) Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium-sulfur batteries. J Power Sources 330:70–77

    Article  CAS  Google Scholar 

  • Chakarvarti SK, Vetter J (1998) Template synthesis – a membrane based technology for generation of nano-micro materials: a review. Radiat Meas 29:149–159

    Article  CAS  Google Scholar 

  • Chen X, Steinhart M, Gösele U (2006) Ordered arrays of mesoporous microrods from recyclable macroporous silicon templates. Adv Mater 18:2135–2156

    Google Scholar 

  • Chen X, Lin P, Zhang K, Baumgart H, Geist B, Kochergin V (2016) Seebeck coefficient enhancement of ALD PbTe/PbSe nanolaminate structures deposited inside porous silicon template. ECS J Solid State Sci Technol 5(9):P503–P508

    Article  CAS  Google Scholar 

  • Chourou ML, Fukami K, Sakka T, Ogata YH (2011) Gold electrodeposition into porous silicon: comparison between meso- and macroporous silicon. Phys Status Solidi C 8(6):1783–1786

    Article  CAS  Google Scholar 

  • Douglas A, Muralidharan N, Carter R, Share K, Pint CL (2016) Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale 8:7384–7390

    Article  CAS  Google Scholar 

  • Errien N, Froyer G, Louarn P (2005) Electrochemical growth of poly(3-dodecylthiophene) into porous silicon layers. Retho Synth Metals 150:255–258

    Article  CAS  Google Scholar 

  • Fan J, Wan M, Zhu D (1998) Studies on the rectifying effect of the heterojunction between porous silicon and water-soluble copolymer of polyaniline. Synth Metals 95:119–124

    Article  CAS  Google Scholar 

  • Fukami K, Harraz FA, Yamauchi T, Sakka T, Ogata YH (2008) Fine-tuning in size and surface morphology of rod-shaped polypyrrole using porous silicon as template. Electrochem Commun 10:56–60

    Article  CAS  Google Scholar 

  • Greiner A, Wendorff J (2008) Functional self-assembled nanofibers by electrospinning. In: Shimizu T (ed) Self-assembled nanomaterials I. Springer-Verlag, Berlin/Heidelberg, pp 107–171

    Chapter  Google Scholar 

  • Grigoras K, Keskinen J, Grönberg L, Yli-Rantala E, Laakso S, Välimäki H, Kauranen P, Ahopelto J, Prunnila M (2016) Conformal titanium nitride in a porous silicon matrix: a nanomaterial for in-chip supercapacitors. Nano Energy 26:340–345

    Article  CAS  Google Scholar 

  • Guo D-J, Zhang H, Li J-B, Fang S-M, Dai Z-D, Tan W (2013) Fabrication and adhesion of a bio-inspired microarray: capillarity-induced casting using porous silicon mold. J Mater Chem B 1:379–386

    Article  CAS  Google Scholar 

  • Halliday DP, Holland ER, Eggleston JM, Adams PN, Cox SE, Monkman AP (1996) Electroluminescence from porous silicon using a conducting polyaniline contact. Thin Solid Films 276:299–302

    Article  CAS  Google Scholar 

  • Harraz FA (2006) Electrochemical polymerization of pyrrole into nanostructured p-type porous silicon. J Electrochem Soc 153(5):C349–C356

    Article  CAS  Google Scholar 

  • Harraz FA (2011) Impregnation of porous silicon with conducting polymers. Phys Status Solidi C 8(6):1883–1887

    Article  CAS  Google Scholar 

  • Harraz FA (2013) Synthesis and surface properties of magnetite (Fe3O4) nanoparticles infiltrated into porous silicon template. Appl Sur Sci 287:203–210

    Article  CAS  Google Scholar 

  • Harraz FA (2014) Electrochemical formation of a novel porous silicon/polypyrrole hybrid structure with enhanced electrical and optical characteristics. J Electroanal Chem 729:68–74

    Article  CAS  Google Scholar 

  • Harraz FA, Salem AM (2013) Enhancement of porous silicon photoluminescence by chemical and electrochemical infiltration of conducting polymers. Scripta Mater 68:683–686

    Article  CAS  Google Scholar 

  • Harraz FA, Kamada K, Sasano J, Izuo S, Sakka T, Ogata YH (2005) Pore filling of macropores prepared in p-type silicon by copper deposition. Phys Status Solidi A 202(8):1683–1687

    Article  CAS  Google Scholar 

  • Harraz FA, Salim MS, Sakka T, Ogata YH (2008a) Hybrid nanostructure of polypyrrole and porous silicon prepared by galvanostatic technique. Electrochim Acta 53:3734–3740

    Article  CAS  Google Scholar 

  • Harraz FA, El-Sheikh SM, Sakka T, Ogata YH (2008b) Cylindrical pore arrays in silicon with intermediate nano-sizes: a template for nanofabrication and multilayer applications. Electrochim Acta 53:6444–6451

    Article  CAS  Google Scholar 

  • Harraz FA, Salem AM, Mohamed BA, Kandil A, Ibrahim IA (2013) Electrochemically deposited cobalt/platinum (Co/Pt) film into porous silicon: structural investigation and magnetic properties. Appl Surf Sci 264:391–398

    Article  CAS  Google Scholar 

  • Harraz FA, Ismail AA, Al-Sayari SA, Hajry AA, Assiri MS (2015) Material deposition into porous silicon templates. ECS Trans 69(2):23–28

    Article  CAS  Google Scholar 

  • Hu J, Odom TW, Lieber CM (1999) Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 32:435–445

    Article  CAS  Google Scholar 

  • Hulteen JC, Martin CR (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7:1075–1087

    Article  CAS  Google Scholar 

  • Johnson SA, Ollivier PJ, Mallouk TE (1999) Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283:963–965

    Article  CAS  Google Scholar 

  • Kobayashi K, Harraz FA, Izuo S, Sakka T, Ogata YH (2006) Microrod and microtube formation by electrodeposition of metal into ordered macropores prepared in p-type silicon. J Electrochem Soc 153(4):C218–C222

    Article  CAS  Google Scholar 

  • Lehmann V (1993) The physics of macropore formation in low-doped n-type silicon. J Electrochem Soc 140:2836–2843

    Article  CAS  Google Scholar 

  • Lewis TW, Moulton SE, Spinks GM, Wallace GG (1997) Optimization of a polypyrrole based actuator. Synth Met 85:1419–1420

    Article  CAS  Google Scholar 

  • Luz-Merino S De La, Calixto ME, Méndez-Blas A, Marí-Soucase B (2016) Electrodeposition and characterization of one-dimensional CuInSe2 nanostructures in mesoporous silicon templates. Mesoporous Biomater 3:67–75

    Google Scholar 

  • Li J, Sailor MJ (2014) Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon. Biosens Bioelectron 55:372–378

    Article  CAS  Google Scholar 

  • Li YY, Cunin F, Link JR, Gao T, Betts RE, Reiver SH, Chin V, Bhatia SN, Sailor MJ (2003) Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299(5615):2045–2047

    Article  CAS  Google Scholar 

  • Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966

    Article  CAS  Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746

    Article  CAS  Google Scholar 

  • Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268:1466–1468

    Article  CAS  Google Scholar 

  • Metke T, Westover AS, Carter R, Oakes L, Douglas A, Pint CL (2016) Particulate-free porous silicon networks for efficient capacitive deionization water desalination. Nature Sci Reports 6:24680

    CAS  Google Scholar 

  • Mishra JK, Bhunia S, Banerjee S, Banerji P (2008) Photoluminescence studies on porous silicon/polymer heterostructure. J Lumin 128:1169–1174

    Article  CAS  Google Scholar 

  • Moller K, Bein T (1998) Inclusion chemistry in periodic mesoporous hosts. Chem Mater 10(10):2950–2963

    Article  CAS  Google Scholar 

  • Moreno JD, Marcos ML, Agulló-Rueda F, Guerrero-Lemus R, Martín-Palma RJ, Martínez-Duart JM, González-Velasco J (1999) A galvanostatic study of the electrodeposition of polypyrrole into porous silicon. Thin Solid Films 348:152–156

    Article  CAS  Google Scholar 

  • Murzina TV, Sychev FY, Kolmychek IA, Aktsipetrov OA (2007) Tunable ferroelectric photonic crystals based on porous silicon templates infiltrated by sodium nitrite. Appl Phys Lett 90:161120

    Article  CAS  Google Scholar 

  • Nahor A, Berger O, Bardavid Y, Toker G, Tamar Y, Reiss L, Asscher M, Yitzchaik S, Sa’ar A (2011) Hybrid structures of porous silicon and conjugated polymers for photovoltaic applications. Phys Status Solidi C 8(6):1908–1912

    Article  CAS  Google Scholar 

  • Nguyen TP, Le Rendu P, Lakéhal M, de Kok M, Vanderzande D, Bulou A, Bardeau JP, Joubert P (2003) Filling porous silicon pores with poly(p-phenylenevinylene). Phys Status Solidi A 197:232–235

    Article  CAS  Google Scholar 

  • Ogata YH, Koyama A, Harraz FA, Salem MS, Sakka T (2007) Electrochemical formation of porous silicon with medium sized-pores. Electrochemistry 75:270–272

    Article  CAS  Google Scholar 

  • Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8(8):1682–1701

    Article  CAS  Google Scholar 

  • Rumpf K, Granitzer P, Poelt P, Allbu M (2011) Double-sided porous silicon template for metal deposition. Phys Status Solidi C 8(6):1808–1811

    Article  CAS  Google Scholar 

  • Salem AMS, Harraz FA, El-Sheikh SM, Hafez HS, Ibrahim IA, Abdel-Mottaleb MSA (2015) Enhanced electrical and luminescent performance of a porous silicon/MEH-PPV nanohybrid synthesized by anodization and repeated spin coating. RSC Adv 5:99892–99898

    Article  CAS  Google Scholar 

  • Schultze JW, Jung KG (1995) Regular nanostructured systems formed electrochemically: deposition of electroactive polybithiophene into porous silicon. Electrochim Acta 40:1369–1383

    Article  CAS  Google Scholar 

  • Shimizu T (2008) Self-assembled nanomaterials I: nanofibers, vol 219, Advances in polymer science. Springer, Berlin

    Google Scholar 

  • Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gösele U (2002) Polymer nanotubes by wetting of ordered porous templates. Science 296:1997–1997

    Article  CAS  Google Scholar 

  • Tian ML, Wang JU, Kurtz J, Mallouk TE, Chan MHW (2003) Electrochemical growth of single-crystal metal nanowires via a two-dimensional nucleation and growth mechanism. Nano Lett 3:919–923

    Article  CAS  Google Scholar 

  • Tondare VN, Gierhart BC, Howitt DG, Smith RL, Chen SJ, Collins SD (2008) An electron microscopy investigation of the structure of porous silicon by oxide replication. Nanotechnology 19:225301, 4 pp

    Article  CAS  Google Scholar 

  • Vrkoslav V, Jelínek I, Broncová G, Král V, Dian J (2006) Polypyrrole-functionalized porous silicon for gas sensing applications. Mater Sci Eng C 26:1072–1076

    Article  CAS  Google Scholar 

  • Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319

    Article  CAS  Google Scholar 

  • Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1999) Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 11(10):2813–2826

    Article  CAS  Google Scholar 

  • Zhang X, Tu KN, Xie YH, Tung CH (2006) High aspect ratio nickel structures fabricated by electrochemical replication of hydrofluoric acid etched silicon. Electrochem Solid State Lett 9(9):C150–C152

    Article  CAS  Google Scholar 

  • Zhao L, Steinhart M, Yosef M, Lee SK, Geppert T, Pippel E, Scholz R, Gösele U, Schlecht S (2005a) Lithium niobate microtubes within ordered macroporous silicon by template thermolysis of a single source precursor. Chem Mater 17:3–5

    Article  CAS  Google Scholar 

  • Zhao L, Yosef M, Steinhart M, Göring P, Hofmeister H, Gösele U, Schlecht S (2005b) Porous silicon and alumina as chemically reactive templates for the synthesis of tubes and wires of SnSe, Sn, and SnO2. Angew Chem Int Ed 45:311–315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid A. Harraz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Harraz, F. . (2018). Porous Silicon and Templating. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_63

Download citation

Publish with us

Policies and ethics