Skip to main content

Characterization Techniques and Challenges with Porous Silicon

  • Reference work entry
  • First Online:
Book cover Handbook of Porous Silicon
  • 239 Accesses

Abstract

Mesoporous silicon is a complex nanostructure whose optoelectronic properties and morphology have received intense study over the last 25 years. Its properties often depend on both its skeleton size distribution and the chemical nature of its high internal surface area. This expanded review provides a glossary of about 100 characterization techniques applied to date to porous silicon; highlighting those techniques receiving dedicated reviews in this section of the handbook; and linking all of them to other parts of the handbook dealing with specific structures, properties and applications. It then also collates some of the lessons learned with regard characterization, highlighting potential issues that need to be considered and artifacts that can arise. These have in the past both complicated data interpretation and even caused problems in reproducing published data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Axelrod E, Givant A, Shappir J, Feldman Y, Saar A (2002) Dielectric relaxation and transport in porous silicon. Phys Rev B 65:165–429

    Article  CAS  Google Scholar 

  • Beckmann KH (1965) Investigation of the chemical properties of stain films on silicon by means of infrared spectroscopy. Surf Sci 3(4):314–332

    Article  CAS  Google Scholar 

  • Ben-Chorin M, Moller F, Koch F, Schirmacher W, Eberhard M (1995) Hopping transport on a fractal: ac conductivity of porous silicon. Phys Rev B 51(4):2199–2213

    Article  CAS  Google Scholar 

  • Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38(1–3):1–126

    Article  CAS  Google Scholar 

  • Boarino L, Borini S, Amato G (2009) Electrical properties of mesoporous silicon: from a surface effect to coulomb blockade and more. J Electrochem Soc 156(12):K223–K226

    Article  CAS  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of waters. Appl Phys Lett 57(10):1046–1048

    Article  CAS  Google Scholar 

  • Canham LT (1997) Properties of porous silicon, EMIS datareview series no 18. IEE Press, London

    Google Scholar 

  • Canham LT, Houlton MR, Leong WY, Keen JM (1991) Atmospheric impregnation of porous silicon. J Appl Phys 70(1):422–431

    Article  CAS  Google Scholar 

  • Canham LT, Cullis AG, Pickering C, Dosser OD, Cox TI, Lynch TP (1994) Luminescent anodized silicon aerocrystal networks prepared by supercritical drying. Nature 368:133–135

    Article  CAS  Google Scholar 

  • Cao L, Price TP, Weiss M, Gao D (2008) Super water- and oil-repellent surfaces on intrinsically hydrophilic and oleophillic porous silicon films. Langmuir 24(5):1640–1643

    Article  CAS  Google Scholar 

  • Chao Y (2011) Optical properties of nanostructured silicon. Compr NanoSci Technol 1:543–570

    Article  Google Scholar 

  • Chuang SF, Collins SD, Smith RL (1989) Porous silicon microstructure as studied by transmission electron microscopy. Appl Phys Lett 55:1540–1543

    Article  CAS  Google Scholar 

  • Costa J, Roura P, Morante JR, Bertran E (1998) Blackbody emission under laser excitation of silicon nanopowder produced by plasma-enhanced chemical-vapour deposition. J Appl Phys 83(12):7879–7885

    Article  CAS  Google Scholar 

  • Cozzi C, Polito G, Strambini LM, Barillaro G (2016) Electrochemical preparation of in-silicon hierarchical networks of regular out-of-plane macropores interconnected by secondary in-plane pores through controlled inhibition of breakdown effects. Electrochim Acta 187:552–559

    Article  CAS  Google Scholar 

  • Cullis AG, Canham LT, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. J Appl Phys 82(3):909–965

    Article  CAS  Google Scholar 

  • Derlet PM, Choy TC, Stoneham AM (1995) An investigation of the porous silicon optical absorption power law near the band edge. J Phys Condens Matter 7:2507–2523

    Article  CAS  Google Scholar 

  • Fauchet PM, Tsybeskov L, Peng C, Duttagupta SP, von Behren J, Kostoulas Y, Vandyshev JMV, Hirschman KD (1995) Light-emitting porous silicon: materials science, properties and device applications. IEEE J Sel Topics Quant Electron 1(4):1126–1139

    Article  CAS  Google Scholar 

  • Gentile F, Battista E et al (2011) Fractal structure can explain the increased hydrophobicity of nanoporous silicon films. Microelectron Eng 88:2537–2540

    Article  CAS  Google Scholar 

  • Giaddui T, Earwaker LG, Forcey KS, Loni A, Canham LT (1998) Improved capping layers for suppression of ambient ageing in porous silicon. J Phys D Appl Phys 31:1131–1136

    Article  CAS  Google Scholar 

  • Golovan LA, Timoshenko VY (2013) Nonlinear optical properties of porous silicon nanostructures. J Nanoelectron Optoelectron 8:223–239

    Article  CAS  Google Scholar 

  • Hamilton B (1995) Porous silicon. Semicond Sci Technol 10:1187–1207

    Article  CAS  Google Scholar 

  • Happo N, Fujiwara M, Iwamatsu M, Horii K (1998) Atomic force microscopy study of self-affine fractal roughness of porous silicon surfaces. Jpn J Appl Phys 37:3951–3953

    Article  CAS  Google Scholar 

  • Harsanyi J, Habermeier HU (1987) Fractal micropatterns generated by anodic etching. Microelectron Eng 6(1–4):575–580

    Article  CAS  Google Scholar 

  • Kim JH, Kim KP, Lyu HK, Woo SH, Seo HS, Lee JH (2009) Three dimensional macropore arrays in p-type silicon fabricated by electrochemical etching. J Korean Phys Soc 55(1):5–9

    Article  CAS  Google Scholar 

  • Liu X, Miao R, Yang J, Bie Y, Wang J, Nuli Y (2016) Scalable and cost-effective preparation of hierarchical porous silicon with a high conversion yield for superior lithium ion storage. Energy Techn 4(5):593–599

    Article  CAS  Google Scholar 

  • Loni A, Canham LT (2013) Exothermic phenomena and hazardous gas release during thermal oxidation of mesoporous silicon powders. J Appl Phys 113:173505

    Article  CAS  Google Scholar 

  • Lysenko V, Vitiello J, Remaki B, Barbier D (2004) Gas permeability of porous silicon nanostructures. Phys Rev E 70:017301

    Article  CAS  Google Scholar 

  • Moretti L, De Stefano L, Rendina I (2007) Quantitative analysis of capillary condensation in fractal-like porous silicon nanostructures. J Appl Phys 101:024309

    Article  CAS  Google Scholar 

  • Nychyporuk T, Lysenko V, Barbier D (2005) Fractal nature of porous silicon nanocrystallites. APS J Phys Rev B 71:115–402

    Google Scholar 

  • Ouyang H, Christopherson M, Fauchet PM (2005) Enhanced control of porous silicon morphology from macropore to mesopore formation. Phys Status Solidi A 202(8):1396–1401

    Article  CAS  Google Scholar 

  • Pacholski C (2013) Photonic crystal sensors based on porous silicon. Sensors 13:4694–4713

    Article  CAS  Google Scholar 

  • Roura P, Costa J (2002) Radiative thermal emission from silicon nanoparticles: a reversed story from quantum to classical theory. Eur J Phys 23:191–203

    Article  CAS  Google Scholar 

  • Scherer WG, Smith DM, Stein D (1995) Deformation of silica aerogels during characterisation. J Non-Cryst Solids 186:309–315

    Article  CAS  Google Scholar 

  • Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71:R1

    Article  CAS  Google Scholar 

  • Tondare VN, Gierhart BC, Howitt DG, Smith RL, Chen SJ, Collins SD (2008) An electron microscopy investigation of the structure of porous silicon by oxide replication. Nanotechnology 19:225–301

    Article  CAS  Google Scholar 

  • Torres-Costa V, Martin-Palma RJ (2010) Application of nanostructured porous silicon in the field of optics. A review. J Mater Sci 45:2823–2838

    Article  CAS  Google Scholar 

  • Valalaki K, Nassiopoulou AG (2014) Thermal conductivity of highly porous silicon in the temperature range 4.2 to 20K. Nano Res Lett 9, 318

    Google Scholar 

  • Xiu Y, Zhu L, Hess DW, Wong CP (2007) Hierarchical silicon etched structures for controlled hydrophobicity/superhydrophobicity. Nano Lett 7(11):3388–3393

    Article  CAS  Google Scholar 

  • Xu HJ, Li XJ (2008) Silicon nanoporous pillar array: a hierarchical silicon structure with high light absorption and triple band photoluminescence. Opt Express 16(5):2933–2941

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Canham, L. (2018). Characterization Techniques and Challenges with Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_40

Download citation

Publish with us

Policies and ethics