Skip to main content

Thermoluminescence of Porous Silicon

  • Reference work entry
  • First Online:
  • 206 Accesses

Abstract

In this updated and expanded review, the thermoluminescence (TL) of porous silicon (PS) is discussed as both a method for characterization of its electronic states and as a dosimeter of ionizing radiations. The observed shape of the TL peaks in PS at low temperatures (4–250 K) is explained by a quasi-continuous spectrum of electron traps with activation energy in range of 0.03–0.4 eV. The high-energy peaks observed at 100–300 °C are associated with radiation-induced defects E` (≡ Si•) and nonbridging oxygen hole centers (≡Si-O•) that are generated in the insulating SiOx layer which covers the PS surface. TL of PS is not currently used for radiation dosimetry due to the low activation energies of the traps and strong fading. Nevertheless, related PS materials (like oxidized PS, silicon nanoparticles in solid matrix, various nanocomposites of scintillation materials in PS) are considered as promising for dosimetry due to high luminescence quantum yield, emission in the visible region, and their biocompatibility that allows to create in vivo dosimetry systems of high spatial resolution. Commercial scintillator-PS composites are also under development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Rahman AT, Hugtenburg RP, Abdul Sani SF et al (2012) An investigation of the thermoluminescence of Ge-doped SiO2 optical fibres for application in interface radiation dosimetry. Appl Radiat Isot 70:1436–1441

    Article  CAS  Google Scholar 

  • Anastasiadis C, Triantis D (2000) Thermally stimulated detrapping in porous silicon. Mater Sci Eng B 69–70:149–151

    Article  Google Scholar 

  • Badel X, Linnros J, Kleimann P, Norlin B (2004) Metallized and oxidised silicon macropore arrays filled with a scintillator for CCD based X-ray imaging detectors. IEEE Trans Nucl Sci 51(3):1001–1005

    Article  CAS  Google Scholar 

  • Benabdesselam M, Mady F, Girard S (2013) Assessment of Ge-doped optical fibre as a TL-mode detector. J Non-Cryst Solids 360:9–12

    Article  CAS  Google Scholar 

  • Blonskyy IV, Brodyn MS, Vakhnin AY et al (2001) Thermoluminescent study of porous silicon. Phys Lett A 279:391–394

    Article  CAS  Google Scholar 

  • Blonskyy IV, Kadan VM, Kadashchuk AK et al (2003) New mechanism of charge carriers localization in silicon nanowires. Phys Low Dimensional Struct 7(8):25

    Google Scholar 

  • Brodovoy OV, Skryshevsky VA, Brodovoy VA (2002) Recombination properties of electronic states in porous silicon. Solid State Electron 46:83–87

    Article  CAS  Google Scholar 

  • Chen R, McKeever SWS (1997) Theory of thermoluminescence and related phenomena. World Scientific Publications, Singapore

    Book  Google Scholar 

  • Ciurea ML, Baltog I, Lazar M et al (1998) Electrical behaviour of fresh and stored porous silicon films. Thin Solid Films 325:271–277

    Article  CAS  Google Scholar 

  • Ciurea ML, Draghici M, Lazanu S et al (2000) Trapping levels in nanocrystalline porous silicon. Appl Phys Lett 76:3067–3069

    Article  CAS  Google Scholar 

  • Cooke DW, Bennett BL, Farnum EH et al (1997) Thermally stimulated luminescence from x-irradiated porous silicon. Appl Phys Lett 70:3594–3596

    Article  CAS  Google Scholar 

  • de Carvalho IB Jr, Guzzo PL, Sullasi HL et al (2010) Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments. Mater Res 13:265–271

    Article  Google Scholar 

  • Debelo NG, Dejene FB, Mal’nev VN et al (2016) Effect of retrapping on thermoluminescence peak intensities of small amorphous silicon quantum dots. Acta Phys Pol A 129:362–366

    Article  CAS  Google Scholar 

  • Franiv AV, Bovgyra OV, Savchyn OV (2004) Thermostimulated luminescence spectra of InxTl1-xI nanostructures synthesized in porous silicon. Fundam Math 11:742–745

    CAS  Google Scholar 

  • Furetta C (2003) Handbook of thermoluminescence. World Scientific, Singapore

    Book  Google Scholar 

  • Hashim S, Al-Ahbabi S, Bradley DA et al (2009) The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations. Appl Radiat Isot 67:423–427

    Article  CAS  Google Scholar 

  • Hormozan Y, Sychugov I, Linnros J (2016) High resolution x-ray imaging using a structured scintillator. Med Phys 43:696

    Article  Google Scholar 

  • Kleimann P, Linnros J, Frojdh C, Peterson CS (2001) An x-ray imaging pixel detector based on scintillator filled pores in a silicon matrix. Nucl Instrum Methods Phys Res A 460:15–19

    Article  CAS  Google Scholar 

  • Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42:576–581

    Article  CAS  Google Scholar 

  • Koul DK (2008) 110°C thermoluminescence glow peak of quartz-A brief review. Pramana J Phys 71:1209–1229

    Article  CAS  Google Scholar 

  • Kovalev D, Heckler H, Averboukh B et al (1998) Hole burning spectroscopy of porous silicon. Phys Rev B 57:3741–3744

    Article  CAS  Google Scholar 

  • Kutovyi Y, Dybovskyi R, Gavrilchenko I et al (2015) Surface modification of mesoporous silicon for nanoelectronics applications. In: IEEE 35th international conference on electronics and nanotechnology, ELNANO 2015, Kyiv, conference proceedings, pp 65–69

    Google Scholar 

  • McKeever SWS (1984) Thermoluminescence in quartz and silica. Radiat Prot Dosim 8:81–98

    Article  CAS  Google Scholar 

  • McKeever SWS (1988) Thermoluminescence of solids. Cambridge University Press, Cambridge

    Google Scholar 

  • Mendoza-Anaya D, Angeles C, Salas P et al (2003) Nanoparticle-enhanced thermoluminescence in silica gels. Nanotechnology 14:L19–L22

    Article  CAS  Google Scholar 

  • Moscovitch M, Horowitz YS (2007) Thermoluminescent materials for medical applications: LiF:Mg, Ti and LiF:Mg,Cu, P. Radiat Meas 41:S71–S77

    Article  CAS  Google Scholar 

  • Nur N, Yegingil Z, Topaksu M et al (2015) Study of thermoluminescence response of purple to violet amethyst quartz from Balikesir, Turkey. Nucl Inst Methods Phys Res B 358:6–15

    Article  CAS  Google Scholar 

  • Pinčik E, Bartoš P, Jergel M et al (1999) Themetastability of porous silicon/crystalline silicon structure. Thin Solid Films 343–344:277–280

    Article  Google Scholar 

  • Piters TM, Aceves-Mijares M, Berman-Mendoza D et al (2011) Dose dependent shift of the TL glow peak in a silicon rich oxide (SRO) film. Rev Mex Fis S 57:26–29

    CAS  Google Scholar 

  • Rivera T (2011) Synthesis and thermoluminescent characterization of ceramics materials. In: Sikalidis C (ed) Advances in ceramics – synthesis and characterization, processing and specific applications. InTech, Croatia, pp 127–164

    Google Scholar 

  • Simon M, Engel KJ, Menser B et al (2008) X-ray imaging performance of scintillator-filled silicon pore arrays. Med Phys 35:968–981

    Article  CAS  Google Scholar 

  • Skryshevskii YA, Skryshevskii VA (2001) Thermally stimulated luminescence in porous silicon. J Appl Phys 89:2711–2714

    Article  CAS  Google Scholar 

  • Skryshevsky VA, Zinchuk VM, Benilov AI et al (2006) Overcharging of porous silicon localized states at gas adsorption. Semicond Sci Technol 21:1605–1608

    Article  CAS  Google Scholar 

  • Svenonius O, Sahlholm A, Wiklund P, Linnros J (2009) Performance of an X-ray imaging detector based on a structured scintillator. Nucl Instrum Meth Phys Res A607(1):138–140

    Article  CAS  Google Scholar 

  • Tale IA (1981) Trap spectroscopy by the fractional glow technique. Phys Status Solidi A 66:65–75

    Article  CAS  Google Scholar 

  • Trukhin AN, Troks J, Griscom DL (2007) Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica. J Non-Cryst Solids 353:1560–1566

    Article  CAS  Google Scholar 

  • Urdaneta M, Stepanov P, Weinberg IN et al (2011) Porous silicon-based quantum dot broad spectrum radiation detector. In: 12th international workshop on radiation imaging detectors, Robinson College, Cambridge, UK, July 11th–15th 2010

    Article  CAS  Google Scholar 

  • Wintle AG (1997) Luminescence dating: laboratory procedures and protocols. Radiat Meas 27(5/6):769–817

    Article  CAS  Google Scholar 

  • Yusoff AL, Hugtenburg RP, Bradley DA (2005) Review of development of a silica-based thermoluminescence dosimeter. Radiat Phys Chem 74:459–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Skryshevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skryshevsky, V. (2018). Thermoluminescence of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_35

Download citation

Publish with us

Policies and ethics