Skip to main content

Nonlinear Optical Properties of Porous Silicon

  • Reference work entry
  • First Online:
Book cover Handbook of Porous Silicon

Abstract

In this chapter, the nonlinear-optical properties of porous silicon and porous-silicon-based structures are discussed in close connection with their linear optical properties. Variations of the nonlinear susceptibility tensor for porous silicon in comparison with bulk silicon are discussed with special interest to the effect of optical anisotropy caused by the pore orientation. Phase matching for second- and third-harmonic generation in birefringent porous silicon and photonic crystals is also covered. Incoherent nonlinear-optical processes such as nonlinear refraction, absorption, and optical bleaching, as well as different mechanisms responsible for them, are reviewed. Finally, the possibility to employ these effects for developing photonic devices as optical gates, logical elements, and waveguides are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonina SM, Maslennikov ED, Zabotnov SV, Golovan LA (2010) All-optical switching in photonic crystals based on porous silicon. In: Míguez HR., Romanov SG., Andreani LC, Seassal C (eds) Photonic crystal materials and devices IX. Proc of SPIE 7713:77131M

    Article  CAS  Google Scholar 

  • Aktsipetrov OA, Baranova IM, Evtyukhov KN (2016) Second order non-linear optics of silicon and silicon nanostructures. CRC Press, Boca Raton

    Book  Google Scholar 

  • Apiratikul P, Rossi AM, Murphy THE (2009) Nonlinearities in porous silicon optical waveguides at 1550 nm. Opt Express 17(5):3396–3406

    Article  CAS  Google Scholar 

  • Baba T (2008) Slow light in photonic crystals. Nat Photonics 2(8):465–473

    Article  CAS  Google Scholar 

  • Bazaru T, Vlad VI, Petris A, Miu M (2010) Optical linear and third-order nonlinear properties of nano-porous Si. J Optoelectron Adv Mater 12(1):43–47

    CAS  Google Scholar 

  • Beresna M, Tomašiunas R, Volk J, Kádár G (2009) Picosecond reflectance recovery dynamics of porous silicon multilayer. J Opt Soc Am B 26(2):249–253

    Article  CAS  Google Scholar 

  • Bindra KS (2005) Influence of free carrier refraction due to linear absorption on Z-scan study of porous Si. Opt Commun 246(4):421–427

    Article  CAS  Google Scholar 

  • Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126

    Article  CAS  Google Scholar 

  • Bloembergen N, Burns WK, Matsuoka M (1969) Reflected third harmonic generated by picosecond laser pulses. Opt Commun 1(4):195–198

    Article  CAS  Google Scholar 

  • Boyd RW (2003) Nonlinear optics. Academic, San Diego

    Google Scholar 

  • Boyd RW, Gehr JE, Fisher GL, Sipe JE (1996) Nonlinear optical properties of nanocomposite materials. Pure Appl Opt 5:505–512

    Article  CAS  Google Scholar 

  • Bristow AD, Rotenberg N, van Driel HM (2007) Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl Phys Lett 90(19):191104-1–191104-3

    Article  CAS  Google Scholar 

  • Cavanagh M, Power JR, McGilp JF, Munder H, Berger MG (1995) Optical second-harmonic generation studies of the structure of porous silicon surfaces. Thin Solid Films 225(1–2):146–148

    Article  Google Scholar 

  • Chaix A, El Cheikh K, Bouffard E, Maynadier M, Aggad D, Stojanovic V, Knezevic N, Garcia M, Maillard P, Morere A, Gary-Bobo M, Raehm L, Richeter S, Durand JO, Cunin F (2016) Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer. J Mater Chem B 4(21):3639–3642

    Article  CAS  Google Scholar 

  • Corcoran B, Monat C, Grillet C, Moss DJ, Eggleton BJ, White TP, O'Faolain L, Krauss TF (2009) Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics 3(4):206–210

    Article  CAS  Google Scholar 

  • Dao LV, Hannaford P (2005) Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon. J Appl Phys 98(8):083508

    Article  CAS  Google Scholar 

  • Diener J, Shen YR, Kovalev DI, Polisski G, Koch F (1998) Two-photon-excited photoluminescence from porous silicon. Phys Rev B 58(19):12629–12632

    Article  CAS  Google Scholar 

  • Diener J, Kovalev DI, Polisski G, Koch F (1999) Resonant two-photon excitation of silicon nanocrystals. Appl Phys Lett 74(22):3350–3357

    Article  CAS  Google Scholar 

  • Dinu M, Quochi F, Garcia H (2003) Third-order nonlinearities in silicon at telecom wavelengths. Appl Phys Lett 82(18):2954–2956

    Article  CAS  Google Scholar 

  • Dobryakov AL, Karavanskii VA, Kovalenko SA, Merkulova SP, Lozovik Yu E (2000) Observation of coherent phonon states in porous silicon films. JETP Lett 71(7):298–302

    Article  CAS  Google Scholar 

  • Dolgova TV, Maǐdikovskiǐ AI, Martem'yanov MG, Marovsky G, Mattei G, Schuhmacher D, Yakovlev VA, Fedyanin AA, Aktsipetrov OA (2001) Giant second harmonic generation in microcavities based on porous silicon photonic crystals. JETP Lett 73(1):6–9

    Article  CAS  Google Scholar 

  • Dolgova TV, Maǐdykovski AI, Martemyanov MG, Fedyanin AA, Aktsipetrov OA (2002a) Giant third-harmonic in porous silicon photonic crystals and microcavities. JETP Lett 75(15):15–19

    Article  CAS  Google Scholar 

  • Dolgova TV, Maidykovski AI, Martemyanov MG, Fedyanin AA, Aktsipetrov OA, Marowsky G, Yakovlev VA, Mattei G (2002b) Giant microcavity enhancement of second-harmonic generation in all-silicon photonic crystals. Appl Phys Lett 81(15):2725–2727

    Article  CAS  Google Scholar 

  • Efimova A, Eliseev A, Georgobiani V, Kholodov M, Kolchin A, Presnov D, Tkachenko N, Zabotnov S, Golovan L, Kashkarov P (2016) Enhanced photon lifetime in silicon nanowire arrays and increased efficiency of optical processes in them. Opt Quant Electron 48:232–240

    Article  CAS  Google Scholar 

  • Faist J (2005) Silicon shines on. Nature 433(7027):691–692

    Article  CAS  Google Scholar 

  • Falasconi M, Andreani LC, Malvezzi AM, Patrini M, Mulloni V, Pavesi L (2001) Bulk and surface contributions to second-order susceptibilities in crystalline and porous silicon by second-harmonic generation. Surf Sci 481(1–3):105–112

    Article  CAS  Google Scholar 

  • Fedorov AV, Rukhlenko ID, Baranov AV, Kruchinin SY (2011) Optical properties of semiconductor quantum dots. Science, Saint-Petersburg

    Google Scholar 

  • Gayvoronsky VYa, Golovan LA, Kopylovsky MA, Gromov YV, Zabotnov SV, Piskunov NA, Kashkarov PK, Timoshenko VYu (2011) Two-photon absorption and nonlinear refraction of birefringent mesoporous silicon films. Quant Electron 41(3):257–261

    Google Scholar 

  • Ghiner AV, Surdutovich GI (1994) Method of integral equations and an extinction theorem for two-dimensional problems in nonlinear optics. Phys Rev A 50(1):714–723

    Article  CAS  Google Scholar 

  • Gibbs HM (1985) Optical bistability: controlling light with light. Academic, New York

    Google Scholar 

  • Golovan LA, Timoshenko VYu (2013) Nonlinear-optical properties of porous silicon nanostructures. J Nanoelectron Optoelectron 8:223–239

    Article  CAS  Google Scholar 

  • Golovan LA, Zoteev AV, Kashkarov PK, Timoshenko VYu (1994) Study of porous silicon by Raman scattering and second-harmonic generation. Tech Phys Lett 20(4):334–335

    Google Scholar 

  • Golovan LA, Zheltikov AM, Kashkarov PK, Koroteev NI, Lisachenko MG, Naumov AN, Sidorov-Biryukov DA, Timoshenko VYu, Fedotov AB (1999) Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap. JETP Lett 69(4):300–305

    Google Scholar 

  • Golovan LA, Kashkarov PK, Syrchin MS, Zheltikov AM (2000) One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion. Phys Status Solidi A 182(1):437–442

    Article  CAS  Google Scholar 

  • Golovan LA, Timoshenko VYu, Fedotov AB, Kuznetsova LP, Sidorov-Biryukov DA, Kashkarov PK, Zheltikov AM, Kovalev D, Künzner N, Gross E, Diener J, Polisski G, Koch F (2001) Phase matching of second-harmonic generation in birefringent porous silicon. Appl Phys B Lasers Opt 73(1):31–34

    Article  CAS  Google Scholar 

  • Golovan LA, Kuznetsova LP, Fedotov AB, Konorov SO, Sidorov-Biryukov DA, Timoshenko VYu, Zheltikov AM, Kashkarov PK (2003) Nanocrystal-size-sensitive third-harmonic generation in nanostructured silicon. Appl Phys B Lasers Opt 76(4):429–433

    Article  CAS  Google Scholar 

  • Golovan LA, Melnikov VA, Bestem’yanov KP, Zabotnov SV, Gordienko VM, Timoshenko VYu, Zheltikov AM, Kashkarov PK (2005) Disorder-correlated enhancement of second-harmonic generation in strongly photonic porous gallium phosphide. Appl Phys B Lasers Opt 81(2–3):353–356

    Article  CAS  Google Scholar 

  • Golovan LA, Melnikov VA, Konorov SO, Fedotov AB, Timoshenko VYu, Zheltikov AM, Kashkarov PK, Ivanov DA, Petrov GI, Yakovlev VV (2006) Linear and nonlinear optical anisotropy of amorphous oxidized silicon films induced by a network of pores. Phys Rev B 73(11):115337

    Google Scholar 

  • Golovan LA, Timoshenko VY, Kashkarov PK (2007) Optical properties of porous-system-based nanocomposites. Physics-Uspekhi 50(6):595–612

    Article  CAS  Google Scholar 

  • Golovan LA, Zabotnov SV, Timoshenko VYu, Kashkarov PK (2009) Consideration for the dynamic depolarization in the effective-medium model for description of optical properties for anisotropic nanostructured semiconductors. Semiconductors 43(2): 218–222

    Article  CAS  Google Scholar 

  • Golovan LA, Bunkov KV, Gonchar KA, Timoshenko VYu, Osminkina LA, Petrov DV, Marshov VS, Sivakov VA, Kulmas MN (2012a) Enhancement of the Raman scattering and the third-harmonic generation in silicon nanowires. In: ALT Proceedings, vol 1. https://doi.org/10.12684/alt.1.81

  • Golovan LA, Gonchar KA, Osminkina LA, Timoshenko VY, Petrov GI, Yakovlev VV (2012b) Coherent anti-stokes Raman scattering in silicon nanowire ensembles. Laser Phys Lett 9(2):145–150

    Article  CAS  Google Scholar 

  • Golovan LA, Sokolov AA, Timoshenko VYu, Semenov AV, Pastushenko A, Nychyporuk T, Lysenko V (2015) Increase in the lifetime of a photon and in the efficiency of Raman scattering and second-harmonic generation processes in porous silicon carbide. JETP Lett 101(12):793–797

    Google Scholar 

  • Gutman N, Armon A, Sa’ar A, Osherov A, Golan Y (2008) Enhanced photoluminescence and photonic bandgap modification from composite photonic crystals of macroporous silicon and nanocrystalline PbS thin films. Appl Phys Lett 93(7):073111

    Article  CAS  Google Scholar 

  • Henary FZ, Morgenstern K, Blau WJ, Karavanskii VA, Dneprovskii VS (1995) Third-order nonlinearity and all-optical switching in porous silicon. Appl Phys Lett 67(3):323–325

    Article  Google Scholar 

  • Huang ZP, Wang RX, Jia D, Maoying L, Humphrey MG, Zhang C (2012) Low-cost, large-scale, and facile production of Si nanowires exhibiting enhanced third-order optical nonlinearity. ACS Appl Mater Interfaces 4(8):1553–1558

    Article  CAS  Google Scholar 

  • Kanemitsu Y, Okamoto S, Mito A (1995) Third-order nonlinear optical susceptibility and photoluminescence in porous silicon. Phys Rev B 52(15):10752–10755

    Article  CAS  Google Scholar 

  • Kashkarov PK, Zheltikov AM (2000) On the Boolean algebra of porous-silicon photonic band-gap structures. Nonlinear Optics 23:305–313

    CAS  Google Scholar 

  • Kashkarov PK, Golovan LA, Fedotov AB, Efimova AI, Kuznetsova LP, Timoshenko VYu, Sidorov-Biryukov DA, Zheltikov AM, Haus JW (2002) Photonic bandgap materials and birefringent layers based on anisotropically nanostructured silicon. J Opt Soc Am B 19(9): 2273–2281

    Article  CAS  Google Scholar 

  • Kittel C (1953) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  • Kitzerow H-S, Matthias H, Schweizer SL, van Driel HM, Wehrspohn RB (2008) Tuning of the optical properties in photonic crystals made of macroporous silicon. Adv Opt Technol 2008:780784

    Article  Google Scholar 

  • Klimov VI, Dneprovskii VS, Karavanskii VA (1994) Nonlinear-transmission spectra of porous silicon: manifestation of size quantization. Appl Phys Lett 64(20):2691–2693

    Article  CAS  Google Scholar 

  • Klimov VI, McBranch D, Karavanskii VA (1995) Strong optical nonlinearities in porous silicon: femtosecond nonlinear transmission study. Phys Rev B 52(24):R16989–R16992

    Article  CAS  Google Scholar 

  • Knezevic NZ, Stojanovic V, Chaix A, Bouffard E, El Cheikh K, Morere A, Maynadier M, Lemercier G, Garcia M, Gary-Bobo M, Durand JO, Cunin F (2016) Ruthenium(II) complex-photosensitized multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy. J Mater Chem B 4(7):1337–1342

    Article  CAS  Google Scholar 

  • Kolasinski KW, De Witt KM, Harrison I (2007) Sum-frequency generation from planar and porous silicon in contact with liquids. Phys Status Solidi A 204(5):1356–1361

    Article  CAS  Google Scholar 

  • Kompan ME, Salonen J, Shabanov IY (2000) Anomalous birefringence of light in free-standing samples of porous silicon. JETP 90(2):324–329

    Article  CAS  Google Scholar 

  • Kovalev D, Heckler H, Polisski G, Koch F (1999) Optical properties of Si nanocrystals. Phys Status Solidi B 215:871–932

    Article  CAS  Google Scholar 

  • Kovalev D, Polisski G, Diener J, Heckler H, Künzner N, Timoshenko VY, Koch F (2001) Strong in-plane birefringence in nanostructured silicon. Appl Phys Lett 8(7):916–918

    Article  CAS  Google Scholar 

  • Koyama H, Fauchet PM (2000) Laser-induced thermal effects on the optical properties of free-standing porous silicon films. J Appl Phys 87(4):1788–1794

    Article  CAS  Google Scholar 

  • Künzner N, Kovalev D, Diener J, Gross E, Timoshenko VYu, Polisski G, Koch F, Fujii M (2001) Giant birefringence in anisotropically nanostructured silicon. Opt Lett 26(16):1265–1267

    Article  Google Scholar 

  • Kuyken B, Liu X, Osgood RM Jr, Baets R, Roelkens G, Green WMJ (2011) Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt Express 19(21):20172–20181

    Article  CAS  Google Scholar 

  • Kuznetsova LP, Efimova AI, Osminkina LA, Golovan LA, Timoshenko VY, Kashkarov PK (2002) Study of birefringence in porous silicon layers by IR Fourier spectroscopy. Physics of the Solid State 44(5):811–815

    Article  CAS  Google Scholar 

  • Lehmann V, Stengl R, Luigart A (2000) On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mater Sci Eng B 69-70:11–22

    Article  Google Scholar 

  • Leonard SW, van Driel HM, Schilling J, Wehrspohn RB (2002) Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection. Phys Rev B 66(16):1611021

    Article  CAS  Google Scholar 

  • Lettieri S, Maddalena P (2002) Nonresonant Kerr effect in microporous silicon: nonbulk dispersive behavior of below band gap χ(3)(ω). J Appl Phys 91(9):5564–5570

    Article  CAS  Google Scholar 

  • Lettieri S, Fiore O, Maddalena P, Ninno D, Di Francia G, La Ferrara V (1999) Nonlinear optical refraction of free-standing porous silicon layers. Opt Commun 168:383–391

    Article  CAS  Google Scholar 

  • Leuthold J, Koos C, Freude W (2010) Nonlinear silicon photonics. Nature Photon 4:535–544

    Article  CAS  Google Scholar 

  • Lienau C, Elsaesser T (2008) Ultrafast coherent spectroscopy of single semiconductor quantum dots. In: Bimberg D (ed) Semiconductor Nanostructures. Springer, Berlin, pp 301–328

    Chapter  Google Scholar 

  • Liu H, Fonseca LF, Weisz SZ, Jia W, Resto O (1999) Observation of picosecond nonlinear optical response from porous silicon. J Lumin 83-84:37–42

    Article  Google Scholar 

  • Lo KY, Lue JT (1993) Optical second-harmonic generation from porous silicon. IEEE Photon Technol Lett 5(6):651–653

    Article  Google Scholar 

  • Lysenko V, Perichon S, Remaki B, Barbier D, Champagnon B (1999) Thermal conductivity of thick meso-porous silicon layers by micro-Raman scattering. J Appl Phys 86(12):6841–6846

    Article  CAS  Google Scholar 

  • Maidykovski AI, Nagorskii NM, Murzina TV, Nikulin AA, Magnitskii SA, Aktsipetrov OA (2011) Second-harmonic confocal microscopy of layered microstructures based on porous silicon. JETP Lett 94(6):451–454

    Article  CAS  Google Scholar 

  • Malý P, Trojánek F, Valenta J, Banáš S, Vácha M, Adamec F, Dian J, Hála J, Pelant I (1994) Luminescence and nonlinear optical properties of porous silicon. J Lumin 60-61:441–444

    Article  Google Scholar 

  • Malý P, Trojánek F, Kudrna J, Hospodkova A, Banáš S, Kohlová V, Valenta J, Pelant I (1996) Picosecond and millisecond dynamics of photoexcited carriers in porous silicon. Phys Rev B 54(11):7929–7936

    Article  Google Scholar 

  • Martemyanov MG, Kim EM, Dolgova TV, Fedyanin AA, Aktsipetrov OA, Marowsky G (2004) Third-harmonic generation in silicon photonic crystals and microcavities. Phys Rev B 70(7):073311

    Article  CAS  Google Scholar 

  • Martin M, Palestino G, Cloitre T, Agarwal V, Zimányi L, Gergely C (2009) Three-dimensional spatial resolution of the nonlinear photoemission from biofunctionalized porous silicon microcavity. Appl Phys Lett 94(22):223313

    Article  CAS  Google Scholar 

  • Matsumoto T, Daimon M, Mimura H, Kanemitsu Y, Koshida N (1995) Optically induced absorption in porous silicon and its application to logic gates. J Electrochem Soc 142:3528–3533

    Article  CAS  Google Scholar 

  • Memon AA, Fukuyama A, Ikari T (2003) Near band edge non-radiative recombination of Si single crystal investigated by piezoelectric photothermal spectroscopy. Jpn J Appl Phys, Pt 1 42(2A):358–362

    Article  CAS  Google Scholar 

  • Mihalcescu I, Lérondel G, Romestain R (1997) Porous silicon anisotropy investigated by guided light. Thin Solid Films 297(1–2):245–249

    Article  CAS  Google Scholar 

  • de la Mora MB, Torres-Torres C, Nava R, Trejo-Valdez M, Reyes-Esqueda JA (2014) Photoluminescent logic gate controlled by the optical Kerr effect exhibited by porous silicon. Opt Laser Technol 59:104–109

    Article  CAS  Google Scholar 

  • Moretti L, De Stefano L, Rossi AM, Rendina I (2005) Dispersion of thermo-optic coefficient in porous silicon layers of different porosities. Appl Phys Lett 86:061107

    Article  CAS  Google Scholar 

  • Novikov VB, Svyakhovskiy SE, Maydykovskiy AI, Murzina TV, Mantsyzov BI (2015) Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals. J Appl Phys 118(19):193101

    Article  CAS  Google Scholar 

  • Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67(11–12):351–357

    Article  Google Scholar 

  • Petrov GI, Shcheslavskiy VI, Yakovlev VV, Golovan LA, Krutkova EYu, Fedotov AB, Zheltikov AM, Timoshenko VYu, Kashkarov PK, Stepovich EM (2006) Effect of photonic crystal structure on the nonlinear optical anisotropy of birefringent porous silicon. Opt Lett 31(21):3152–3154

    Article  CAS  Google Scholar 

  • Pham A, Qiao H, Guan B, Gal M, Gooding JJ, Reece PJ (2011) Optical bistability in mesoporous silicon microcavity resonators. J Appl Phys 109(9):093113

    Article  CAS  Google Scholar 

  • Rong G, Najmaie A, Sipe JE, Weiss SM (2008) Nanoscale porous silicon waveguide for label-free DNA sensing. Biosens Bioelectron 23(10):1572–1576

    Article  CAS  Google Scholar 

  • Sheik-Bahae M, Said AA, van Stryland EW (1990) High-sensitivity, single-beam n2 measurements. Opt Lett 14(17):955–957

    Article  Google Scholar 

  • Shen YR (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  • Shichi S, Fujii M, Nishida T, Yasuda H, Imakita K, Hayashi S (2012) Three-dimensional structure of (110) porous silicon with in-plane optical birefringence. J Appl Phys 111(8):084303

    Article  CAS  Google Scholar 

  • Shokrollahi A, Zare M (2013) Fabricating optical waveguide based on porous silicon structures. Optik 124:855–858

    Article  CAS  Google Scholar 

  • Simbula A, Rodriguez GA, Menotti M, De Pace S, Weiss SM, Galli M, Liscidini M, Bajoni D (2016) Low-power four-wave mixing in porous silicon microring resonators. Appl Phys Lett 109(2):021106

    Article  CAS  Google Scholar 

  • Simos C, Rodriguez L, Skarka V, Phu XN, Errien N, Froyer G, Nguyen TP, Le Rendu P, Pirastesh P (2005) Measurement of the third order nonlinear properties of conjugated polymers embedded in porous silicon and silicia. Phys Status Solidi C 2(9):S3232–S3236

    Article  CAS  Google Scholar 

  • Sipe JE, Boyd RW (2002) Nanocomposite materials for nonlinear optics based on local field effect. In: Shalaev VM (ed) Optical properties of nanostructured random media. Topics Appl. Phys, vol 82. Springer, Heidelberg, pp 1–19

    Chapter  Google Scholar 

  • Sivakov VA, Brönstrup G, Pecz B, Berger A, Radnoczi GZ, Krause M, Christiansen SH (2010) Realization of vertical and zigzag single crystalline silicon nanowire architectures. J Phys Chem C 114(9):3798–3803

    Article  CAS  Google Scholar 

  • Soboleva IV, Murchikova EM, Fedyanin AA, Aktsipetrov OA (2005) Second- and third-harmonic generation in birefringent photonic crystals and microcavities based on anisotropic porous silicon. Appl Phys Lett 87(24):241110

    Article  CAS  Google Scholar 

  • Suess RJ, Jadidi MM, Kim K, Murphy TE (2014) Characterization of optical nonlinearities in nanoporous silicon waveguides via pump-probe heterodyning technique. Opt Express 22(14):17466–17477

    Article  Google Scholar 

  • Sutherland RL (1996) Handbook on nonlinear optics. Optical engineering, vol 52. Marcel Dekker, New York

    Google Scholar 

  • Takahashi M, Toriumi Y, Matsumoto T, Masumoto Y, Koshida N (2000) Significant photoinduced refractive index change observed in porous silicon Fabry-Perot resonators. Appl Phys Lett 76(15):1990–1992

    Article  CAS  Google Scholar 

  • Tan HW, van Driel HM, Schweizer SL, Wehrspohn RB, Gösele U (2004) Nonlinear optical tuning of a two-dimensional silicon photonic crystal. Phys Rev B 70(20):205110

    Article  CAS  Google Scholar 

  • Theiß W (1997) Optical properties of porous silicon. Surf Sci Rep 29:91–192

    Article  Google Scholar 

  • Tomasiunas R, Moniatte J, Pelant I, Gilliot P, Hönerlage B (1996) Femtosecond dephasing in porous silicon. Appl Phys Lett 68(23):3296–3298

    Article  CAS  Google Scholar 

  • Tsang HK, Wong CS, Liang TK, Day IE, Roberts SW, Harpin A, Drake J, Asghari M (2002) Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength. Appl Phys Lett 80(3):416–418

    Article  CAS  Google Scholar 

  • Uklein AV, Multian VV, Oliinik BV, Doroshchuk VV, Alekseev SA, Lysenko VV, Brodyn MS, Gayvoronsky VY (2017) Impact of water adsorption on nonlinear optical properties of functionalized porous silicon. Nanoscale Res Lett 12:69

    Article  CAS  Google Scholar 

  • Vincent G (1994) Optical properties of porous silicon superlattices. Appl Phys Lett 64(18):2367–2369

    Article  CAS  Google Scholar 

  • Wehrspohn RB, Schweizer SL, Sandoghdar V (2007) Linear and non-linear optical experiments based on macroporous silicon photonic crystals. Phys Stat Sol A 204(11):3708–3726

    Article  CAS  Google Scholar 

  • Xiao L, Wu JW (2015) Porous silicon based all-optical modulator using asymmetrical Mach–Zehnder interferometer configuration. Opt Commun 338:246–252

    Article  CAS  Google Scholar 

  • Zabotnov SV, Konorov SO, Golovan LA, Fedotov AB, Zheltikov AM, Timoshenko VYu, Kashkarov PK, Zhang H (2004) Phase-matched third-harmonic generation in anisotropically nanostructured silicon. JETP 99(1):28–36

    Article  CAS  Google Scholar 

  • Zabotnov SV, Konorov SO, Golovan LA, Fedotov AB, Timoshenko VYu, Zheltikov AM, Kashkarov PK (2005) Modification of cubic susceptibility tensor in birefringent porous silicon. Phys Status Solidi A 202(8):1673–1677

    Article  CAS  Google Scholar 

  • Zheltikov AM (2001) Nanocrystal materials with modified symmetry. Laser Phys 11(9):1024–1028

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid A. Golovan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Golovan, L.A. (2018). Nonlinear Optical Properties of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_139

Download citation

Publish with us

Policies and ethics