Industry, Innovation and Infrastructure

Living Edition
| Editors: Walter Leal Filho, Anabela Marisa Azul, Luciana Brandli, Pinar Gökcin Özuyar, Tony Wall

Industrial Ecology: Ultimate of the Industrial Revolution Toward Sustainability

  • Thalita dos Santos DalbeloEmail author
  • Emília Wanda Rutkowski
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-71059-4_75-1

Definitions

The concept of industrial ecology emerged from urban metabolism, with the assumption of one direction cycle of energy and materials, so that the output from one industrial process is an input of another, as it happens in a biological ecosystem. The first explanation suggests that:

In such a system the consumption of energy and materials is optimized, waste generation is minimized and the effluents of one process whether they are spent catalysts from petroleum refining, fly and bottom ash from electric-power generation or discarded plastic containers from consumer products serve as the raw material for another process. (Frosch and Gallopoulus 1989, p. 144)

Introduction

The industrial ecology is correlated with sustainable practices, such as natural resource use optimization, material cycle closure, activity dematerialization, and reduction or elimination of dependence on nonrenewable sources of energy. For this, some implementation tools are used: cleaner production,...

This is a preview of subscription content, log in to check access.

References

  1. Bailey R, Allen JK, Bras B (2004) Applying ecological input-output flow analysis to material flows in industrial systems. J Ind Ecol 8(1–2):45–68Google Scholar
  2. Chertow MR (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25:313–337CrossRefGoogle Scholar
  3. Costa MM (2002) Princípios de Ecologia Industrial aplicados à Sustentabilidade Ambiental e aos Sistemas de Produção de Aço. Thesis. University of Rio de Janeiro, Rio de JaneiroGoogle Scholar
  4. Côté R, Cohen-Rosenthal E (1998) Designing eco-industrial parks: a synthesis of some experiences. J Clean Prod 6(3–4):181–188CrossRefGoogle Scholar
  5. Côté R, Ellison R, Grant J, Hall J, Klynstra P, Martin M, Wade P (1994) Designing and operating industrial parks as ecosystem. School for Resource and Environmental Studies. Faculty of Management. Dalhousie University, HalifaxGoogle Scholar
  6. Dalbelo TS (2012) Por uma indústria mais sustentável: da ecologia à arquitetura. Masters Dissertation. Faculty of Civil Engineering, Architecture e Urbanism. UNICAMP, CampinasGoogle Scholar
  7. Dalbelo TS, Freire RA, Rutkowski EW, Monteiro EZ (2011) Conceitos, princípios e ferramentas para um ambiente urbano-industrial mais sustentável. In: Abstracts of the 3rd international workshop advances in cleaner production: cleaner production initiatives and challenges for a sustainable world. UNIP, São Paulo, 18–20 May 2011Google Scholar
  8. Dong H, Fujita T, Geng Y, Dong L, Ohnishi S, Sun L, Dou Y, Fujii M (2016a) A review on eco-city evaluation methods and highlights for integration. Ecol Indic 60:1184–1191CrossRefGoogle Scholar
  9. Dong L, Fujita T, Dai M, Geng Y, Ren J, Fujii M, Wang Y, Ohnishi S (2016b) Towards preventative eco-industrial development: an industrial and urban symbiosis case in one typical industrial city in China. J Clean Prod 114:387–400CrossRefGoogle Scholar
  10. Douglas I, Goode D, Houck M, Wang R (2011) The Routledge handbook of urban ecology. Routledge Handbooks, New YorkGoogle Scholar
  11. Ehrenfeld J, Chertow MR (2002) Industry ecology: the legacy of Kalundborg. In: Ayres R, Ayres L (eds) Handbook of industrial ecology. Edward Elgar Publishing, London, UK, pp 334–351Google Scholar
  12. Erkman S (2001) Industrial ecology: a new perspective on the future of the industrial system. In: President’s lecture, Assemblée annuelle de la Société Suisse de Pneumologie. Genève, 30 May 2001Google Scholar
  13. Erkman S, Ramaswamy R (2006) Industrial ecology: an introduction. In: Green K, Randles S (eds) Industrial ecology and spaces of innovation. Edward Elgar Publishing, UK, pp 28–45Google Scholar
  14. Erkman S, Francis C, Ramaswamy R (2005) Ecologia industrial: uma agenda para a evolução no longo prazo do sistema industrial. Cadernos de Proposições para o Século XXI, 12. Instituto Pólis, São PauloGoogle Scholar
  15. Fragomeni ALM (2005) Parques Industriais Ecológicos como Instrumento de Planejamento e Gestão Ambiental Cooperativa. Thesis. University of Rio de Janeiro, Rio de Janeiro, RJGoogle Scholar
  16. FEEMA – Fundação Estadual de Engenharia do Meio Ambiente (2002) Programa Rio Ecopolo: ABC do Programa. Rio de JaneiroGoogle Scholar
  17. Fischer-Kowalski M (1998) Society’s metabolism: the intellectual history of materials flow analysis, Part 1: 1860–1970. J Ind Ecol 2(1):61–78CrossRefGoogle Scholar
  18. Fischer-Kowalski M, Huttler W (1999) Society’s metabolism: an intellectual history of materials flow analysis, Part 2: 1970–1998. J Ind Ecol 2(4):107–136CrossRefGoogle Scholar
  19. Frosch RA, Gallopoulus NE (1989) Strategies for manufacturing. Sci Am 261(3):144–152CrossRefGoogle Scholar
  20. Geng Y, Zhang P, Côtè R, Fujita T (2008) Assessment of the National Eco-Industrial Park Standard for promoting industrial symbiosis in China. J Ind Ecol 13(1):15–26CrossRefGoogle Scholar
  21. Gibbs D, Deutz P (2007) Reflections on implementing industrial ecology through eco-industrial park development. J Clean Prod 15(17):1683–1695CrossRefGoogle Scholar
  22. González GC (2009) Una revisión de los principios de La Ecología Industrial. Revista Nueva Epoca 22(59):247–265Google Scholar
  23. Graedel TE, Allenby BR (1995) Industrial ecology. Prentice-Hall, Englewood CliffsGoogle Scholar
  24. Graedel TE, Allenby BR (2010) Industrial ecology and sustainable engineering. Prentice Hall, Englewood CliffsGoogle Scholar
  25. Lave LB, Cobas-Flores E, McMichael FC, Hendrickson CR (1995) Using input-output analysis to estimate economy-wide discharges. Environ Sci Technol 29(9):420–426CrossRefGoogle Scholar
  26. Leontief W (1936) Quantitative input and output relations in the economic system of the United States. Rev Econ Stat 18:105–125CrossRefGoogle Scholar
  27. Liu G-f, Chen F-d (2013) NISP – based research on the system structure of urban symbiosis network in China. Appl Mech Mater 427–429:2923–2927CrossRefGoogle Scholar
  28. Margalef R (1974) Ecologia. Omega, BarcelonaGoogle Scholar
  29. Matthews HS, Small MJ (2000) Extending the boundaries of life-cycle assessment through environmental economic input-output models. J Ind Ecol 4(3):7–10CrossRefGoogle Scholar
  30. Mirata M, Pearce R (2006) Industrial symbiosis in the UK. In: Green K, Randles S (eds) Industrial ecology and spaces of innovation. London, UKGoogle Scholar
  31. Nakamura S, Kondo Y (2009) Waste input-output analysis: concepts and application to industrial ecology. Springer, DordrechtCrossRefGoogle Scholar
  32. Odum E (1985) Ecologia. CBS College Publishing, Rio de JaneiroGoogle Scholar
  33. Ohnishi S, Fujii M, Fujita T, Matsumoto T, Dong L, Akiyama H, Dong H (2016) Comparative analysis of recycling industry development in Japan following the Eco-Town program for eco-industrial development. J Clean Prod 114:95–102CrossRefGoogle Scholar
  34. Ohnishi S, Dong H, Geng Y, Fujii M, Fujita T (2017) A comprehensive evaluation on industrial & urban symbiosis by combining MFA, carbon footprint and emergy methods – Case of Kawasaki, Japan. Ecological Indicators 73:513–524Google Scholar
  35. PCSD – U. S. President’s Council on Sustainable Development (1997) Eco-industrial park workshop proceedings. PCSD, Washington, DCGoogle Scholar
  36. Peck JSW (2000) Industrial ecology: from theories to practice. Peck & Associates, OntarioGoogle Scholar
  37. Pereira AS, Lima JCF, Rutkowski EW (2007) Ecologia industrial no Brasil: uma discussão sobre as abordagens brasileiras de simbiose industrial. In: Proceedings of IX Encontro Nacional Sobre Gestão Empresarial e Meio Ambiente, CuritibaGoogle Scholar
  38. Robinson D (2011) Computer modelling for sustainable urban design – physical principles, methods & aplications. Earthscan, New YorkGoogle Scholar
  39. Schlarb M (2001) Eco-industrial development: a strategy for building sustainable communities. United States Economic Development Administration, Cornell University, Washington, DCGoogle Scholar
  40. Sendra C, Gabarrell X, Vicent T (2007) Material flow analysis adapted to an industrial area. J Clean Prod 15(17):1706–1715CrossRefGoogle Scholar
  41. Suh S (2009) Handbook of input-output economics in industrial ecology. SpringerGoogle Scholar
  42. Tilley DR (2003) Industrial ecology and ecological engineering: opportunities for symbiosis. J Ind Ecol 7(2):13–32CrossRefGoogle Scholar
  43. U.S. CONGRESS (1990) Pollution prevention Act of 1990. USC 42, Section 13106, Washington, DCGoogle Scholar
  44. Van Berkel R, Fugita T, Hashimoto S, Geng Y (2008) Industrial and urban symbiosis in Japan: analysis of the eco-town program 1997–2006. Environ Manag 90(3):1544–1556Google Scholar
  45. Veiga LBE (2007) Diretrizes para a implantação de um parque industrial ecológico: uma proposta para o Pie de Paracambi. Thesis. University of Rio de Janeiro, Rio de JaneiroGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thalita dos Santos Dalbelo
    • 1
    Email author
  • Emília Wanda Rutkowski
    • 2
  1. 1.Department of Integrated Planning, University of CampinasCampinasBrazil
  2. 2.School of Civil Engineering, Architecture and Urban DesignUniversity of CampinasCampinasBrazil

Section editors and affiliations

  • Lizhen Huang
    • 1
  1. 1.Department of manufacturing and civil engineeringNorwegian University of Science and TechnologyGjøvikNorway