Skip to main content

Marine Bioprospecting to Improve Knowledge of the Biological Sciences and Industrial Processes

  • Living reference work entry
  • First Online:
Affordable and Clean Energy

Definition

Bioprospecting or biodiversity prospecting is defined as the systematic search for genes, natural compounds, designs, and whole organisms in wild life with a potential for product development for pharmaceutical, cosmetic, agricultural, and other applications, without disruption to nature (Mateo et al. 2001).

Introduction

Oceans are the largest natural habitat on earth with a substantial biodiversity that occupies approximately 70% of the planet’s surface (Polidoro et al. 2008). They have varying physical and chemical conditions, which causes organisms to exhibit a variety of molecules with unique characteristics (Faulkner 2001; Simmons et al. 2005). The seas and oceans contain a huge source of biological, genetic, and chemical diversity. More than 300,000 plant and animal species are known, of which a small percentage have already resulted in the characterization of over 12,000 new chemical compounds. Marine ecosystem services produce a huge diversity of goods and services...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alino PM, Coll JC (1989) Observations of the synchronized mass spawning and post settlement activity of octocorals on the Great Barrier Reef, Australia: biological aspects. Bull Mar Sci 45:697–707

    Google Scholar 

  • Alino PM, Sammarco PW, Coll JC (1992) Competitive strategies in soft corals (Coelenterata, Octocorallia). IV. Environmentally induced reversals in competitive superiority. Mar Ecol Prog Ser 81:129–145

    Article  Google Scholar 

  • Arnaud-Haond S, Arrieta JM, Duarte CM (2011) Marine biodiversity and gene patents. Science 331:1521–1522

    Article  Google Scholar 

  • Arrieta J, Arnaud-Haond S, Duarte CM (2010) What lies underneath: conserving the ocean’s genetic resources. Proc Natl Acad Sci U S A 107(43):18318–18324

    Article  Google Scholar 

  • Bakus GJ, Thun M (1979) Bioassays on the toxicity of Caribbean sponges. Colloq Int C N R S 291:417–422

    Google Scholar 

  • Bakus GJ, Targett NM, Schulte B (1986) Chemical ecology of marine organisms: an overview. J Chem Ecol 12:951–987

    Article  Google Scholar 

  • Beattie AJ, Barthlott W, Elisabetsky E et al (2005) New products and industries from biodiversity. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being, Millennium Ecosystem Assessment. Island Press, Washington, DC, pp 273–295

    Google Scholar 

  • Becker EW (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 312–351

    Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2003) Pectins and their manipulation. Nat Prod Rep 20:1

    Article  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29:144–222

    Article  Google Scholar 

  • Borowitzka MA (1993) Products from microalgae. Infofish Int 5:21–26

    Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Bowden BF, Coll JC, Tapiolas DM, Willis RH (1985) Some chemical aspects of spawning in Alcyonacean corals. In: Proc. 5th Int. Coral Reef Symp., Tahiti, vol 6, pp 325–329

    Google Scholar 

  • Britton R, de Oliveira JHHL, Andersen RJ, Berlinck RGSJ (2001) Granulatimide and 6-Bromogranulatimide, Minor Alkaloids of the Brazilian Ascidian Didemnum granulatum. J Nat Prod 64:254–255

    Article  Google Scholar 

  • Brown MR, Mular M, Miller I, Farmer C, Trenerry C (1999) The vitamin content of microalgae used in aquaculture. J Appl Phycol 11:247–255

    Article  Google Scholar 

  • Bruno JJ (2001) Edible microalgae: a review of the health research, vol 3. Center for Nutritional Psychology, Pacifica, p 56

    Google Scholar 

  • Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine Cyanobacteria – a prolific source of natural products. Tetrahedron 57:9347–9377

    Article  Google Scholar 

  • Calewaert JB, Piniella AM, McDonough N (2012) Marine biotechnology RTDI in Europe – inventory of strategic documents and activities. Deliverable no. 3.5. Inventory report of marine biotechnology RTDI in Europe. Part of Task 3.1. Inventory of marine biotechnology RTDI strategies, programmes and initiatives report. Marine Board-ESF

    Google Scholar 

  • Camargo JA, Alonso Á (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849

    Article  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87(1):1–14

    Article  Google Scholar 

  • Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P (2013) Review of energy balance in raceway ponds for microalgae cultivation: rethinking a traditional system is possible. Appl Energy 102:101–111

    Article  Google Scholar 

  • Ciereszko LS, Karns TKB (1973) Comparative biochemistry of coral reef coelenterates. In: Jones OA, Endean R (eds) Biology and geology of coral reefs, biology 1, vol II. Academic Press, New York, pp 183–203

    Chapter  Google Scholar 

  • Coll JC (1992) The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem Rev 92:613–631

    Article  Google Scholar 

  • Coll JC, La Barre SC, Sammarco PW, Williams WT, Bakus GJ (1982) Chemical defences in soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef: a study of comparative toxicities. Mar Ecol Prog Ser 8:271–278. Conservation 78:97–106

    Article  Google Scholar 

  • Coll JC, Bowden BF, König GM, Braslau R, Price IR (1986) Studies of Australian soft corals. The natural products chemistry of Alcyonacean soft corals with special reference to the genus Lobophytum. Bull Soc Chim Belg 95:815–833

    Article  Google Scholar 

  • Coll JC, Bowden BF, Alino PN, Heaton A, König GM, De Nys R, Willis RH (1989) Chemically mediated interactions between marine organisms. Chem Scr 29:383–388

    Google Scholar 

  • Coll JC, Bowden BF, Clayton M (1990) Chemistry and coral reproduction. Chem Br 26:761–763

    Google Scholar 

  • Colla LM et al (2004) Fatty acids of Spirulina platensis grown under different temperatures and nitrogen concentrations. Z Naturforsch 59c:55–59

    Article  Google Scholar 

  • Davies-Coleman, MT, Sunassee, SN (2012) Marine bioprospecting in southern Africa. In: Drug discovery in Africa – impacts of geneomics, natural products, traditional medicines, insights into medicinal chemistry, and technology platforms in pursuit of new drugs. (eds. K. Chibale, M. Davies-Coleman, and C. Masimirembwa) pp. 193–209. Springer-Verlag, Berlim

    Chapter  Google Scholar 

  • Darzins AL, Pienkos P, Edye L (2010) Current status and potential for algal biofuels production: a report to IEA Bioenergy Task 39: commercializing liquid biofuels from biomass. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • de la Calle F (2009) Marine genetic resources, a source of new drugs: the experience of the biotechnology sector. Int J Mar Coast Law 24(2):209–220

    Article  Google Scholar 

  • Duh CY, Wang SK, Weng YL, Chiang MY, Dai CF (1999) Cytotoxic terpenoids from the Formosan soft coral Nephthea brassica. Tetrahedron Lett 41:1401–1403

    Article  Google Scholar 

  • Duh CY, Wang SK, Weng YL (2000) Brassicolene, a novel cytotoxic diterpenoid from the Formosan soft coral Nephthea brassica. Tetrahedron Lett 41:1401–1403

    Article  Google Scholar 

  • ECORYS (2014) Study in support of Impact Assessment work on Blue Biotechnology, FWC MARE/2012706 – SC C1/2013/03

    Google Scholar 

  • Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49

    Article  Google Scholar 

  • Fleury BG (1999) Ecologia Química Marinha: Competição por espaço entre corais e efeitos de nutrientes no metabolismo secundário de macroalgas e octocorais. Tese de doutorado. Universidade Federal do Rio de Janeiro, NPPN-CCS, Rio de Janeiro, p 261

    Google Scholar 

  • Fleury BG, Coll JC, Tentori E, Duquesne S, Figueiredo L (2000) Effect of nutrient enrichment on the complementary (secondary) metabolite composition of the soft coral Sarcophyton ehrenbergi (Cnidaria: Octocorallia: Alcyonacea) of the Great Barrier Reef. Mar Biol 136:63–68

    Article  Google Scholar 

  • Gerhart DJ (1986) Gregariousness in the gorgonian-eating gastropod Cyphoma gibbosum: tests of several possible causes. Mar Ecol Prog Ser 31:2545–2263

    Article  Google Scholar 

  • Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  Google Scholar 

  • Global Industry Analysts, Inc. (2015) Marine biotechnology: a global strategic business report. http://www.strategyr.com/pressMCP-1612.asp

  • Global Ocean Commission (2013) Policy options paper no. 4: bioprospecting and marine genetic resources in the high seas. A series of papers on policy options, prepared for the third meeting of the Global Ocean Commission

    Google Scholar 

  • Granato AC, Berlinck RG S, Magalhães A, Schefer AB, Ferreira AG, Sanctis B, Freitas JC, Hajdu E, Migotto AE (2000) Produtos naturais das esponjas marinhas Aaptos sp., Hymeniacidon aff. Heliophila, e do nudibrânquio Doris aff. Verrucosa. QUÍMICA NOVA 23(5):594–599

    Google Scholar 

  • Greiber T (2011) Access and benefit sharing in relation to marine genetic resources from areas beyond national jurisdiction – a possible way forward no. 301. Research project of the Federal Agency for Nature Conservation, German Federal Agency for Nature Conservation, Bundesamt für Naturschutz (BfN), Bonn

    Google Scholar 

  • Grobbelaar JU (2004) Algal biotechnology: real opportunities for Africa. S Afr J Bot 70(1):140–144

    Article  Google Scholar 

  • Handayani D, Edrada RA, Proksch P, Wray V, Witte L, van Ofwegen L, Kunzmann A (1997) New oxygenated sesquiterpenes from the Indonesian soft coral Nephthea chabrolii. J Nat Prod 60:716–718

    Article  Google Scholar 

  • Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Biol Ecol 200:103–134

    Article  Google Scholar 

  • Hay ME, Fenical W (1988) Marine plant–herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145

    Article  Google Scholar 

  • Hernandez, A, Zainos A, Romo R (2000) Neuronal correlates of sensory discrimination in the somatosensory cortex. Proc Natl Acad Sci USA 97:6191–6196

    Article  Google Scholar 

  • Heydarizadeh P, Poirier I, Loizeau D, Ulmann L, Mimouni V, Schoefs B, Bertrand M (2013) Plastids of marine phytoplankton produce bioactive pigments and lipids. Mar Drugs 11:3425–3471

    Article  Google Scholar 

  • IEA Bioenergy Task 39 and IEA AMF (2011) Algae as a feedstock for biofuels – an assessment of the current status and potential for algal biofuels production. www.task39.org

  • Johansen SD, Emblem A, Karlsen BO, Okkenhaug S, Hansen H, Moum T, Coucheron DH, Seternes OM (2010) Approaching marine bioprospecting in hexacorals by RNA deep sequencing. New Biotechnol 27:267–275

    Article  Google Scholar 

  • Kamyab H, Fadhil M, Lee C, Ponraj M, Soltani M, Eva S (2014) Micro–macro algal mixture as a promising agent for treating POME discharge and its potential use as animal feed stock enhancer. J Teknol 68:1–4

    Google Scholar 

  • Kelecom A (1997) Marine natural products in Brazil. Part 1. Isolation and structure determination. Ciênc Cult 49:321

    Google Scholar 

  • Kelecom A (1998) Synthesis of marine natural products in Brazil. J Braz Chem Soc 9:101

    Article  Google Scholar 

  • Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Mar Drugs 2:73–82

    Article  Google Scholar 

  • Kirk EA, Behrens PW (1999) Commercial developments in microalgal biotechnology. J Phycol 35:215–226

    Article  Google Scholar 

  • Koehn FE, Carter GT (2005) Rediscovering natural products as a source of new drugs. Discov Med 26:159–164

    Google Scholar 

  • La Barre SC, Coll JC, Sammarco PW (1986) Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef. II. The relationship between toxicity and feeding deterrence. Biol Bull 171:565–576

    Article  Google Scholar 

  • Laird DW, Rowen CC, Machold T, May PM, Hefter GT (2013) Volatile products from the degradation of organics in a synthetic Bayer liquor. Ind Eng Chem Res 52(10):3613

    Article  Google Scholar 

  • Laird S (2013) Bioscience at a Crossroads: Access and Benefit Sharing in a Time of Scientific, Technological and Industry Change: The Pharmaceutical Industry. Secretariat of the CBD, Toronto

    Google Scholar 

  • Leal MC, Calado RC (2015) Marine natural products: biodiscovery, biodiversity and bioproduction. In: Brahmachari G (ed) Bioactive natural products: chemistry and biology. Wiley, Weinheim, pp 473–490

    Chapter  Google Scholar 

  • Leal MC, Puga J (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades – where and what are we bioprospecting? PLoS One 7(1):e30580

    Article  Google Scholar 

  • Leal MC, Sheridan C, Osinga R, Dionisio G, Rocha RJM, Silva B, Rosa R, Calado R (2014) Marine microorganism-invertebrate assemblages: perspectives to solve the “supply problem” in the initial steps of drug discovery. Mar Drugs 12(7):3929–3952

    Article  Google Scholar 

  • Leman J (1997) Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol 51:195–243

    Article  Google Scholar 

  • Lindsay B, Almeida AMP, Smith C, Rocha RM, Berlinck RGS, Ireland CM (1999) 6-Methoxy-7-methyl-8-oxoguanine, an unusual purine from the ascidian Symplegma rubra. J Nat Prod 62:1573

    Article  Google Scholar 

  • Liu D, Keesing JK, He P, Wang Z, Shi Y, Wang Y (2013) The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuar Coast Shelf Sci 129:2–10

    Article  Google Scholar 

  • Marine Board (2010) Marine biotechnology: a new vision and strategy for Europe. Marine Board – ESF Position Paper 15. European Science Foundation, Marine Board series, p 94

    Google Scholar 

  • Marine Board (2017) Marine biotechnology advancing innovation in Europe’s bioeconomy. EMB Policy Brief No. 4, Marine Board series, p 8

    Google Scholar 

  • Marris E (2006) Drugs from the deep. Nature 443(7114):904–905

    Article  Google Scholar 

  • Martins A, Vieira H, Gaspar H, Santos S (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drugs 12:1066–1101

    Article  Google Scholar 

  • Mateo MA, Renom P, Hemminga MA, Peene J 2001. Measurement of seagrass production using the 13C stable isotope compared with classical O2 and 14C methods. Marine Ecology Progress Series 223:157–165

    Article  Google Scholar 

  • McClintock JB, Baker BJ (1997) A review of the chemical ecology of Antarctic marine invertebrates. Am Zool 37:329–342

    Article  Google Scholar 

  • McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC Press, New York, p 610

    Book  Google Scholar 

  • Molina Grima E et al (2004) Downstream processing of cell mass and products. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 215–251

    Google Scholar 

  • Molinski TF, Dalisay DS, Lievens SL, Saludes JP (2009) Drug development from marine natural products. Nat Rev Drug Discov 8:69–85

    Article  Google Scholar 

  • Muller WE, Schroder HC, Wiens M, Perovic-Ottstadt S, Batel R, Muller IM (2004) Traditional and modern biomedical prospecting: part II – the benefits. Evid Based Complement Alternat Med 1:133–144

    Article  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Muller-Feuga A (2004) Microalgae for aquaculture. In: RICHMOND, A. (Ed). Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science p 352–364

    Google Scholar 

  • OECD (2005) OECD Economic Globalisation Indicators, OECD, Paris

    Google Scholar 

  • OECD (2016) Marine biotechnology: definitions, infrastructures and directions for innovation. Working party on biotechnology, nanotechnology and converging technologies. http://www.marinebiotech.eu/sites/marinebiotech.eu/files/public/DSTI STP BNCT 2016 10.pdf

  • Oldham P. Hall S, Barnes C, Oldham C, Cutter M, Burns N, Kindness L (2014) Valuing the deep: marine genetic resources in areas beyond national jurisdiction. Department for Environment Food and Rural Affairs (Defra). One World Analytics. Available at http://www.tinyurl.co/valuingthedeep

  • Paul VJ (1992) In: Eisner T, Meinwald J (eds) Ecological roles of marine natural products. Cornell University Press, London, p 245

    Google Scholar 

  • Paul S (2015) Trips and biotechnology vs. CBD and biodiversity: is it bioprospecting or bio-piracy of developing countries’ traditional knowledge? Int J Phys Soc Sci 5:603–631

    Google Scholar 

  • Paul VJ, Puglisi MP (2004) Chemical mediation of interactions among marine organisms. Nat Prod Rep 21:189–209

    Article  Google Scholar 

  • Pawlik JR (1992) Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr Mar Biol Annu Rev 30:237–335

    Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93:1911–1922

    Article  Google Scholar 

  • Polidoro BA, Livingstone SR, Carpenter KE, Hutchinson B, Mast RB, Pilcher N, Sadovy DE, Mitcheson Y, Valenti S (2008) Status of the world’s marine species. In: Vié J-C, Hilton-Taylor C, Stuart SN (eds) The 2008 review of The IUCN Red List of Threatened Species. IUCN, Gland

    Google Scholar 

  • Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Crini G (2017) Alkylphenol and alkylphenolpolyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem 10:3749–3773

    Article  Google Scholar 

  • Proksch P (1994) Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. Toxicon 32:639–655

    Article  Google Scholar 

  • Proksch P (1999) Chemical defense in marine ecosystems. In: Wink M (ed) Functions of plant secondary metabolites and their exploitation in biotechnology. Academic Press, Sheffield, pp 134–154

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  Google Scholar 

  • Rama Rao M, Sridevi KV, Venkatesham U, Prabhaker Rao T, Lee SS, Venkateswarlu Y (2000) Four new sesquiterpenoids from the soft coral Nephthea chabrollii. J Chem Res 5:245–247

    Google Scholar 

  • Richmond A (2004) Handbook of Microalgal Culture - Biotechnology and Applied Phycology. Blackwell Science Ltd a Blackwell Publishing company. pp 566

    Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka A., Borowitzka L., editors.1988. Microalgal Biotechnology. Cambridge University Press; United Kingdom. pp 83–121

    Google Scholar 

  • Roberge M, Berlinck RGS, Xu L, Anderson H, Lim LY, Curman D, Stringer CM, Friend SH, Davies P, Vincent I, Haggarty SJ, Kelly MT, Britton R, Piers E, Andersen RJ (1998) High-throughput assay for G2 checkpoint inhibitors and identification of the structurally novel compound isogranulatimide. Cancer Res 58:5701–5706

    Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N et al (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Saeki BM, Granato AC, Berlinck RGS, Magalhães A, Schefer AB, Ferreira AG, Pinheiro UG, Hajdu E (2002) Two unprecedented dibromotyrosine-derived alkaloids from the Brazilian endemic marine sponge Aplysina caissara. J Nat Prod 65:796–799

    Article  Google Scholar 

  • Sammarco PW, Coll JC (1988) The chemical ecologyof Alcyonarian corals (Coelenterata: Octocorallia). In: Scheuer PJ (ed) Bioorganic marine chemistry, vol 2. Springer, Berlin, pp 87–116

    Chapter  Google Scholar 

  • Sammarco PW, Coll JC (1992) Chemical adaptations in the Octocorallia: evolutionary considerations. Mar Ecol Prog Ser 88:93–104

    Article  Google Scholar 

  • Sammarco PW, Coll JC, La Barre SC, Willis B (1983) Competitive strategies of soft corals (Coelenterata: Octocorallia). Allelopathic effects on selected scleractinian corals. Coral Reefs 1:173–178

    Article  Google Scholar 

  • Sammarco PW, Coll JC, La Barre SC (1985) Competitive strategies of soft corals (Coelenterata: Octocorallia). II. Variable defensive response and susceptibility to scleractinian corals. J Exp Mar Biol Ecol 91:199–215

    Article  Google Scholar 

  • Sammarco PW, La Barre S, Coll JC (1987) Defensive strategies of soft corals (Coelenterata: Octocorallia) of the Great Barrier Reef. III. The relationship between ichthyotoxicity and morphology. Oecologia 74:93–101

    Article  Google Scholar 

  • Silva JS, Moura MD, Oliveira RAG, Diniz MFFM, Barbosa-Filho JM (2003) Natural products inhibitors of ovarian neoplasia. Phytomedicine 10:221–232

    Article  Google Scholar 

  • Silva ACR, Lopes PM, Azevedo MMB, Costa DCM, Alviano CS, Alviano DS (2012) Biological activities of α-pinene and β-pinene enantiomers. Molecules 17:6305–6316

    Article  Google Scholar 

  • Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342

    Google Scholar 

  • Slade R (2011) The sustainability of micro-algae biofuels: environmental & economic performance. In: Proceedings of ISAF XIX, Verona

    Google Scholar 

  • Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C, Stensvåg K (2011) Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 5:519–530

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae – review. J Biosci Bioeng 101:8796

    Article  Google Scholar 

  • Stolz P, Obermayer B (2005) Manufacturing microalgae for skin care. Cosmet. Toiletries 120:99–106

    Google Scholar 

  • Torres YR, Berlinck RGS, Magalhães A, Schefer AB, Ferreira AG, Hajdu E, Muricy G (2000) Arenosclerins A–C and haliclonacyclamine E, new tetracyclic alkaloids from a Brazilian endemic Haplosclerid sponge Arenosclera brasiliensis. J Nat Prod 63:1098–1105

    Article  Google Scholar 

  • Torres YR, Berlinck RGS, Nascimento GGF, Fortier SC, Pessoa C, Moraes MO (2002a) Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon 40:885

    Article  Google Scholar 

  • Torres YR, Bugni TS, Berlinck RGS, Ireland CM, Magalhães A, Ferreira AG, Rocha RM (2002b) Sebastianines a novel biologically active pyridoacridine alkaloids from the Brazilian ascidian Cystodytes. J Org Chem 67:5429–5432

    Article  Google Scholar 

  • Tripathi U et al (1999) Production of astaxanthin in Haematococcus pluvialis cultured in various media. Bioresour Technol 68:197–199

    Article  Google Scholar 

  • Vasconcelos MTSD, Leal MFC (2001) Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar Chem 74:65–85

    Article  Google Scholar 

  • Wahle CM (1980) Detection, pursuit and overgrowth of tropical gorgonians by milleporid hydrocorals: Perseus and Medusa revisited. Science 209:689–691

    Article  Google Scholar 

  • Wallace CC, Babcock RC, Harrison PL, Oliver JK, Willis BL (1986) Sex on the reef: mass spawning of corals. Oceanus 29:38–42

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Morgado .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Morgado, F., Vieira, L.R. (2020). Marine Bioprospecting to Improve Knowledge of the Biological Sciences and Industrial Processes. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Affordable and Clean Energy. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-71057-0_117-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71057-0_117-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71057-0

  • Online ISBN: 978-3-319-71057-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics