Advertisement

Classical Greek and Roman Architecture: Examples and Typologies

  • Sylvie DuvernoyEmail author
Living reference work entry

Abstract

Focusing on Vitruvius’ De Architectura Libri Decem, the oldest extant architectural treatise available today, this chapter traces the ways in which mathematical concepts were embedded in the architectural design process in general and more particularly in the creation of Doric, Ionic, and Corinthian temples. In essence, Vitruvius provides a way of understanding how mathematics was used by the architects of the Classical Greek and Roman worlds to both solve practical problems and to create buildings which conformed to the highest aesthetic aspirations of the era. The study of the later typology of Roman amphitheaters provides a clear example of the changing role of geometry in architectural planning, as it shows innovative patterns with respect to Greek tradition and close connections between progress in mathematics and modernity in architecture.

Keywords

Vitruvius Commensurability Symmetry Modularity Arithmetization of geometry Greek temples Archimedes Apollonius Roman amphitheaters 

References

  1. Apollonius of Perga (1998) Conics, books I–III. In: Densmore D (ed), Green Lions Press, Santa Fe–NMGoogle Scholar
  2. Archimedes (2009) On conoids and spheroids. In: Heath T (ed) The works of Archimedes. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  3. Duvernoy S (2009) L’anfiteatro di Pompei: un esempio di sintonia fra matematica antica e architettura. In: Conferenze e Seminari dell’Associazione Subalpina Mathesis 2008–2009, Kim Williams Books, TurinGoogle Scholar
  4. Duvernoy S, Rosin P (2006) The compass, the ruler and the computer. In: Duvernoy S, Pedemonte O (eds) Nexus VI mathematics and architecture. Kim Williams Books, TurinGoogle Scholar
  5. Frézouls E (1987) Vitruve et le dessin d’architecture. In: Le dessin d’architecture dans les Sociétés Antiques: Actes du colloque de Strasbourg, 26–28 janvier 1984. In: Annales. Économies, Sociétés, Civilisations. 42è année, n. 2Google Scholar
  6. Gros P (1989) Structures et limites de la compilation vitruvienne dans les livres III et IV du De Architectura. In: Geertman H, de Jong JJ, Kooreman A (eds) Munus non ingratum. Stichting Bulletin Antieke Beschaving, LeidenGoogle Scholar
  7. Heath ST (1981) A history of Greek mathematics. Dover, New YorkGoogle Scholar
  8. Tomlinson RA (1989) Viruvius and Hermogenes. In: Geertman H, de Jong JJ, Kooreman A (eds) Munus non ingratum. Stichting Bulletin Antieke Beschaving, LeidenGoogle Scholar
  9. Vitruvius (1990) De l’Architecture (trans: Philippe Fleury). Les Belles Lettres, ParisGoogle Scholar
  10. Vitruvius (2009) On architecture (trans: Richard Schofield). Penguin Books, LondonGoogle Scholar
  11. Williams K, Duvernoy S (2014) The shadow of Euclid on architecture. Math Intell 36(1):37–48MathSciNetCrossRefGoogle Scholar
  12. Wilson Jones M (2000) Principles of roman architecture. Yale University Press, New HavenGoogle Scholar
  13. Wilson Jones M (2006) Ancient architecture and mathematics: methodology and the doric temple. In: Duvernoy S, Pedemonte O (eds) Nexus VI architecture and mathematics. Kim Williams Books, TurinGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Politecnico di MilanoMilanItaly

Personalised recommendations