Adams C (1994) The knot book: an elementary introduction to the mathematical theory of knots. W H Freeman, New York
MATH
Google Scholar
Ashley CW (1944) The Ashley book of knots. Faber and Faber, London
Google Scholar
Devlin K (1998) The language of mathematics: making the invisible visible. W H Freeman, New York
MATH
Google Scholar
Devlin K (1999) Mathematics: the new golden age. Columbia University Press, New York
MATH
Google Scholar
van de Griend P (1996) A history of topological knot theory. In: Turner JC, van de Griend P (eds) History and science of knots. World Scientific, Singapore, pp 205–260
CrossRef
Google Scholar
Grünbaum B, Shephard GC (1987) Tilings and patterns. W H Freeman, New York
MATH
Google Scholar
Harris M (1988) Common threads: mathematics and textiles. Math Sch 17(4):24–28
Google Scholar
Harris M (1997) Common threads: women, mathematics and work. Trentham Books, Stoke-on-Trent
Google Scholar
Issey Miyake Inc (2018) 132 5. Issey Miyake. http://www.isseymiyake.com/en/brands/132_5.html. Accessed 20 July 2008
Jablanand S, Sazdanovic R (2007) LinKnot: knot theory by computer, vol 21. World Scientific, Singapore
CrossRef
Google Scholar
Kaplan CS (2009) Introductory tiling theory for computer graphics. Morgan & Claypool, San Rafael
CrossRef
Google Scholar
Lagae A, Dutre P (2006) An alternative for Wang tiles: colored edges versus colored corners. ACM Trans Graph 25(4):1442–1459
CrossRef
Google Scholar
Lee MEM, Ockendon H (2005) A continuum model for entangled fibres. Eur J Appl Math 16:145–160
MathSciNet
CrossRef
Google Scholar
Mann C (2004) Heesch’s tiling problem. Am Math Mon 111(6):509–517
MathSciNet
CrossRef
Google Scholar
Meluzzi D, Smith DE, Arya G (2010) Biophysics of knotting. Annu Rev Biophys 39:349–366
CrossRef
Google Scholar
Nimkulrat N (2009) Paperness: expressive material in textile art from an artist’s viewpoint. University of Art and Design Helsinki, Helsinki
Google Scholar
Nimkulrat N, Matthews J (2016) Novel textile knot designs through mathematical knot diagrams. In: Torrence E, Torrence B, Séquin C, McKenna D, Fenyvesi K, Sarhangi R (eds) Proceedings of Bridges 2016: mathematics, music, art, architecture, education, culture. Tessellations, Phoenix, pp 477–480
Google Scholar
Nurmi T (2016) From checkerboard to cloverfield: using Wang tiles in seamless non-periodic patterns. In: Torrence E, Torrence B, Séquin C, McKenna D, Fenyvesi K, Sarhangi R (eds) Proceedings of Bridges 2016: mathematics, music, art, architecture, education, culture. Tessellations, Phoenix, pp 159–166
Google Scholar
Osinga HM, Krauskopf B (2004) Crocheting the Lorenz manifold. Math Intell 26(4):25–37
MathSciNet
CrossRef
Google Scholar
Osinga HM, Krauskopf B (2014) How to crochet a space-filling pancake: the math, the art and what next. In: Greenfield G, Hart GW, Sarhangi R (eds) Bridges 2014: mathematics, music, art, architecture, culture. Tessellations, Phoenix, pp 19–26
Google Scholar
Sennett R (2008) The craftsman. Yale University Press, New Haven
Google Scholar
Sossinsky A (2002) Knots: mathematics with a twist. Harvard University Press, Cambridge, MA
MATH
Google Scholar
Taimina D (2009) Crocheting adventures with hyperbolic planes. AK Peters, Wellesley
CrossRef
Google Scholar
Woodhouse T, Brand A (1920) Textile mathematics: part I. Blackie & Son, London
Google Scholar
Woodhouse T, Brand A (1921) Textile mathematics: part 2. Blackie & Son, London
Google Scholar