Skip to main content

Mathematical Design for Knotted Textiles

  • 535 Accesses


This chapter examines the relationship between mathematics and textile knot practice, i.e., how mathematics may be adopted to characterize knotted textiles and to generate new knot designs. Two key mathematical concepts discussed are knot theory and tiling theory. First, knot theory and its connected mathematical concept, braid theory, are used to examine the mathematical properties of knotted textile structures and explore possibilities of facilitating the conceptualization, design, and production of knotted textiles. Through the application of knot diagrams, several novel two-tone knotted patterns and a new material structure can be created. Second, mathematical tiling methods, in particular the Wang tiling and the Rhombille tiling, are applied to further explore the design possibilities of new textile knot structures. Based on tiling notations generated, several two- and three-dimensional structures are created. The relationship between textile knot practice and mathematics illuminates an objective and detailed way of designing knotted textiles and communicating their creative processes. Mathematical diagrams and notations not only reveal the nature of craft knots but also stimulate new ideas, which may not have occurred otherwise.


  • Design
  • Knot diagram
  • Knot theory
  • Knotted textiles
  • Rhombille tiling
  • Wang tiles

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34


  • Adams C (1994) The knot book: an elementary introduction to the mathematical theory of knots. W H Freeman, New York

    MATH  Google Scholar 

  • Ashley CW (1944) The Ashley book of knots. Faber and Faber, London

    Google Scholar 

  • Devlin K (1998) The language of mathematics: making the invisible visible. W H Freeman, New York

    MATH  Google Scholar 

  • Devlin K (1999) Mathematics: the new golden age. Columbia University Press, New York

    MATH  Google Scholar 

  • van de Griend P (1996) A history of topological knot theory. In: Turner JC, van de Griend P (eds) History and science of knots. World Scientific, Singapore, pp 205–260

    CrossRef  Google Scholar 

  • Grünbaum B, Shephard GC (1987) Tilings and patterns. W H Freeman, New York

    MATH  Google Scholar 

  • Harris M (1988) Common threads: mathematics and textiles. Math Sch 17(4):24–28

    Google Scholar 

  • Harris M (1997) Common threads: women, mathematics and work. Trentham Books, Stoke-on-Trent

    Google Scholar 

  • Issey Miyake Inc (2018) 132 5. Issey Miyake. Accessed 20 July 2008

  • Jablanand S, Sazdanovic R (2007) LinKnot: knot theory by computer, vol 21. World Scientific, Singapore

    CrossRef  Google Scholar 

  • Kaplan CS (2009) Introductory tiling theory for computer graphics. Morgan & Claypool, San Rafael

    CrossRef  Google Scholar 

  • Lagae A, Dutre P (2006) An alternative for Wang tiles: colored edges versus colored corners. ACM Trans Graph 25(4):1442–1459

    CrossRef  Google Scholar 

  • Lee MEM, Ockendon H (2005) A continuum model for entangled fibres. Eur J Appl Math 16:145–160

    MathSciNet  CrossRef  Google Scholar 

  • Mann C (2004) Heesch’s tiling problem. Am Math Mon 111(6):509–517

    MathSciNet  CrossRef  Google Scholar 

  • Meluzzi D, Smith DE, Arya G (2010) Biophysics of knotting. Annu Rev Biophys 39:349–366

    CrossRef  Google Scholar 

  • Nimkulrat N (2009) Paperness: expressive material in textile art from an artist’s viewpoint. University of Art and Design Helsinki, Helsinki

    Google Scholar 

  • Nimkulrat N, Matthews J (2016) Novel textile knot designs through mathematical knot diagrams. In: Torrence E, Torrence B, Séquin C, McKenna D, Fenyvesi K, Sarhangi R (eds) Proceedings of Bridges 2016: mathematics, music, art, architecture, education, culture. Tessellations, Phoenix, pp 477–480

    Google Scholar 

  • Nurmi T (2016) From checkerboard to cloverfield: using Wang tiles in seamless non-periodic patterns. In: Torrence E, Torrence B, Séquin C, McKenna D, Fenyvesi K, Sarhangi R (eds) Proceedings of Bridges 2016: mathematics, music, art, architecture, education, culture. Tessellations, Phoenix, pp 159–166

    Google Scholar 

  • Osinga HM, Krauskopf B (2004) Crocheting the Lorenz manifold. Math Intell 26(4):25–37

    MathSciNet  CrossRef  Google Scholar 

  • Osinga HM, Krauskopf B (2014) How to crochet a space-filling pancake: the math, the art and what next. In: Greenfield G, Hart GW, Sarhangi R (eds) Bridges 2014: mathematics, music, art, architecture, culture. Tessellations, Phoenix, pp 19–26

    Google Scholar 

  • Sennett R (2008) The craftsman. Yale University Press, New Haven

    Google Scholar 

  • Sossinsky A (2002) Knots: mathematics with a twist. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • Taimina D (2009) Crocheting adventures with hyperbolic planes. AK Peters, Wellesley

    CrossRef  Google Scholar 

  • Woodhouse T, Brand A (1920) Textile mathematics: part I. Blackie & Son, London

    Google Scholar 

  • Woodhouse T, Brand A (1921) Textile mathematics: part 2. Blackie & Son, London

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nithikul Nimkulrat .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Nimkulrat, N., Nurmi, T. (2019). Mathematical Design for Knotted Textiles. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering