Risk and Decision Making: Modeling and Statistics in Medicine – Case Studies

  • Manfred BorovcnikEmail author
Living reference work entry


This chapter illustrates issues of risk and decision-making in connection to health issues by case studies. Fundamental aspects of statistics in medicine are the topics of a separate twin chapter on “Risk and Decision Making: Modeling and Statistics in Medicine – Fundamental Aspects.”

The present chapter represents the ideas in the form of case studies. The first case study illustrates how risk communication fails in a public discussion. To improve the situation, it gets essential that the wider public acquires more competencies so that risks can be debated carefully in public health and for individuals who have to decide about measurements to undergo in order to advance their situation. Some methods to increase risk competencies by simpler representations of the used model are illustrated. The second case study focuses on the question of participating in a screening program for breast cancer from the perspective of affected people, which provides a platform for authentic information and how it may be understood and used for the decision of an individual. In this role play, the following actors are involved: the affected woman, her husband, a friend of the family, and the attending physician. It quickly becomes clear that the views between the interest groups are not really congruent. The third case study investigates the benefits of screening programs from the perspective of empirical studies. It summarizes the evaluation of screening programs based on results of long-term meta-studies for breast cancer. Finally, fact boxes are displayed that are intended to be widely understandable; they should support an individual’s decision for or against screening. Overall, the weighted risks show no or only slight benefits for the screening programs. It remains the question whether societal endeavors should focus on alternative measurements rather than promoting screening programs as the small average improvement of system performance is contrasted with high risks of severe harm to a small number of participants.

The societal rationale in the background suffers from a clash between stakeholders in the public debate: the role one plays determines to a great extent the judgment of the relative benefits of screening programs.


Case studies Risk Risk perception Understanding risk Risk communication Decision making Rationality of decisions Stakeholders of decisions Shared decisions Risk management Medical diagnosis Screening schemes Empirical evidence 


  1. Batanero C, Borovcnik M (2016) Statistics and probability in high school. Sense Publishers, RotterdamCrossRefGoogle Scholar
  2. Beck-Bornholdt H-P, Dubben H-H (2003) Der Schein der Weisen. Irrtümer und Fehlurteile im täglichen Denken, 7. Aufl (The semblance of wise people. Mistakes and misjudgements in daily thinking, 7 edn). Rowohlt, ReinbekGoogle Scholar
  3. Blastland M, Spiegelhalter DJ (2013) The norm chronicles. Profile Books, LondonGoogle Scholar
  4. Borovcnik M (2006) Probabilistic and statistical thinking. In: Bosch M (ed) Proceedings of the fourth congress of the European Society for Research in Mathematics Education. European Society for Research in Mathematics Education (ERME), Barcelona, pp 484–506. Accessed 30 Mar 2019
  5. Borovcnik M (2012) Multiple perspectives on the concept of conditional probability. Avances de Investigación en Didactica de la Matemática 2:5–27. Accessed 30 Mar 2019
  6. Borovcnik M (2015) Risk and decision making: the “logic” of probability. Math Enthus 12(1–3):113–139Google Scholar
  7. Borovcnik M (2016a) “To screen or not to screen” … Dialoge zur medizinischen Diagnose (Dialogues on medical diagnosis). Mathematik Lehren 194:22–28Google Scholar
  8. Borovcnik M (2016b) Probabilistic thinking and probability literacy in the context of risk. Educação Matemática Pesquisa 18(3):1491–1516Google Scholar
  9. Borovcnik M (2018a) Risk and decision making – fundamental aspects. In: Lerman S (ed) Encyclopedia of mathematics education. Springer, ChamGoogle Scholar
  10. Borovcnik M (2018b) Risk and decision making – psychological and educational aspects. In: Lerman S (ed) Encyclopedia of mathematics education. Springer, ChamGoogle Scholar
  11. Borovcnik M (2019) Informal and “informal” inference. In: Contreras JM, Gea MM, López-Martín MM, Molina-Portillo E (eds) Actas del Tercer Congreso International Virtual de Educación Estadística. Granada. Accessed 30 Mar 2019
  12. Borovcnik M, Kapadia R (2011a) Risk in health: more information and more uncertainty. In: Proceedings of the IASE satellite conference on “Statistics Education and Outreach”. ISI, Voorburg, 6 pp. Accessed 30 Mar 2019
  13. Borovcnik M, Kapadia R (2011b) Determinants of decision-making in risky situations. In: Proceedings of the 58th World Statistics Congress. ISI, Voorburg, 6 pp. Accessed 30 Mar 2019
  14. Borovcnik M, Kapadia R (2018) Reasoning with risk: teaching probability and risk as twin concepts. In: Batanero C, Chernoff EJ, Engel J, Lee H, Sánchez E (eds) Research on teaching and learning probability. Springer, New York, pp 3–22Google Scholar
  15. Bundesministerium für Gesundheit (2014) Österreichisches Brustkrebsfrüherkennungsprogramm. Broschüre „früh erkennen“ [Austrian breast cancer screening programme. Brochure “detect it early”]. Accessed 30 Mar 2019
  16. CCOHS (n.d.) Hazard and risk. Canadian Centre for Occupational Health and Safety. Accessed 30 Nov 2017
  17. CDC (n.d.) What are the risk factors for skin cancer? Centers for Disease Control and Prevention, Washington, DC. Accessed 30 Mar 2019
  18. Center for Medical Consumers (2007) Latest heart news: the good, the bad, and the not so bad. Accessed 30 Mar 2019
  19. Deutsches Netzwerk Evidenzbasierte Medizin (2014) Neubewertung von Nutzen und Schaden des Mammographie-Screenings. Offener Brief an den Gesundheitsminister. (Reassessment of benefits and harms of mammography screening. Open letter to the Ministry of Health.) Accessed 30 Mar 2019
  20. Devlin K (2014) The most common misconception about probability? In: Chernoff EJ, Sriraman B (eds) Probabilistic thinking: presenting plural perspectives, Advances in mathematics education, vol 7. Springer, Berlin, pp ix–xiiiGoogle Scholar
  21. Dubben H-H, Beck-Bornholdt H-P (2005) Mit an Sicherheit grenzender Wahrscheinlichkeit. Logisches Denken und Zufall (With a probability that comes close to certainty). Rowohlt, ReinbekGoogle Scholar
  22. Dubben H-H, Beck-Bornholdt H-P (2010) Mit an Sicherheit grenzender Wahrscheinlichkeit. Logisches Denken und Zufall (With a probability coming close to certainty. Logic thinking and randomness). Rowohlt, ReinbekGoogle Scholar
  23. Elmore JG, Armstrong K, Lehman CD, Fletcher SW (2005) Screening for breast cancer. J Am Med Assoc 293(10):1245–1256CrossRefGoogle Scholar
  24. Friedman M, Savage LJ (1952) The expected-utility hypothesis and the measurability of utility. J Pol Econ 60:463–474CrossRefGoogle Scholar
  25. Gasche UP (2014) Das “Swiss Medical Board” stellt Früherkennungs-Programme in Frage. Promotoren reagieren mit fragwürdigen Argumenten (The “Swiss Medical Board” questions early detection programmes. Promoters react with questionable arguments). Info-Sperber, Feb 2014. Accessed 30 Mar 2019
  26. Gigerenzer G (2002) Calculated risks: how to know when numbers deceive you. Simon & Schuster, New YorkGoogle Scholar
  27. Gigerenzer G (2014) Risiko. Wie man die richtigen Entscheidungen trifft. Random House, München. Original: risk savvy. How to make good decisions. Penguin, New YorkGoogle Scholar
  28. Gigerenzer G (2016) Referat von Professor Gerd Gigerenzer zu Risiko- und Gesundheitskompetenz. Helsana Versicherungen, Zürich. Accessed 30 Mar 2019
  29. Gigerenzer G, Hoffrage U (1995) How to improve Bayesian reasoning without instruction: frequency formats. Psychol Rev 102:684–704CrossRefGoogle Scholar
  30. Gigerenzer G, Muir Gray JA (eds) (2013) Bessere Ärzte, bessere Patienten, bessere Medizin. Medizinisch Wissenschaftliche Verlagsgesellschaft, Berlin. Original: better doctors, better patients, better decisions: envisioning health care 2020. MIT Press, Cambridge, MAGoogle Scholar
  31. Goldacre B (2008) Badscience. Fourth Estate, LondonGoogle Scholar
  32. Gøtzsche PC, Nielsen M (2011) Screening for breast cancer with mammography – review. Cochrane Libr 4. Accessed 30 Mar 2019
  33. Greene JA (2010) Medicine and Society. “For me there is no substitute”: authenticity, uniqueness, and the lessons of lipitor. Virtual Mentor AMA J Ethics 12(10):818–823Google Scholar
  34. Hansson SO (2007) Risk. In: Zalta EN (ed) Stanford encyclopedia of science. Archive. Accessed 30 Mar 2019
  35. Harding-Zentrum für Risikokompetenz (n.d.) Nutzen und Risiken der Brustkrebs-Früherkennung (Benefits and risks of early detection of breast cancer). Accessed 30 Mar 2019
  36. Huerta P (2009) On conditional probability problem solving research – structures and contexts. Int Electron J Math Educ 4(3):163–194Google Scholar
  37. Kahneman D, Slovic P, Tversky A (eds) (1982) Judgment under uncertainty: heuristics and biases. Cambridge University Press, CambridgeGoogle Scholar
  38. Kalager M, Zelen M, Langmark F, Adami HO (2010) Effect of screening mammography on breast-cancer mortality in Norway. N Engl J Med 363:1203–1210CrossRefGoogle Scholar
  39. Knight FH (1921) Risk, uncertainty, and profit. Hart, Schaffner & Marx/Houghton Mifflin Company, BostonGoogle Scholar
  40. Koubenec HJ (2000) Mammographie-Screening: Überschätzen wir den Nutzen? (Mammography screening: do we overestimate the benefits?). Berliner Ärzte 37(8):11–16Google Scholar
  41. Larsson LG, Nyström L, Wall S, Rutqvist L, Andersson I, Bjurstam N, Fagerberg G, Frisell J, Tabár L (1996) The Swedish randomised mammography screening trials: analysis of their effect on the breast cancer related excess mortality. J Med Screen 3(3):129–132CrossRefGoogle Scholar
  42. Mayo Clinic (2016) Statin side effects: weigh the benefits and risks. Accessed 30 Mar 2019
  43. Mayo Clinic (n.d.) Mammogram guidelines: what are they? Accessed 30 Mar 2019
  44. McCormack T, Minhas R (2007) Switching statins: do it, but do it properly. Br J Cardiol 14(5):251–252Google Scholar
  45. Miller E (2004) The great Wikipedia authority debate. the importance of …. Accessed 30 Mar 2019
  46. Miller AB, Wall C, Baines CJ, Sun P, Tor T, Narod S A (2014) Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomized screening trial. Br Med J 348:g366. Accessed 30 Mar 2019CrossRefGoogle Scholar
  47. Mongin P (1997) Expected utility theory. In Davis J, Hands W, Maki U (eds) Handbook of economic methodology. Edward Elgar, London, pp 342–350Google Scholar
  48. Mühlhauser I (2004) Wem nützt Mammographie-Screening? (Who benefits from mammography screening?). Berliner Ärzte 41(8):20–22Google Scholar
  49. Nissen SE, Tuzcu EM, Schoenhagen P, Brown BG, Ganz P, Vogel RA, Crowe T, Howard G, Cooper CJ, Brodie B, Grines CL, DeMaria AN (2004) Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. J Am Med Assoc 291(9):1071–1080CrossRefGoogle Scholar
  50. Pareto V (1906) Manuale di economia politica con una introduzione alla scienza sociale. Società Editrice Libraria, Milano. Manuel d’économie politique (1909, Ext French ed). Giard et Brière, Paris. Vol 7 Oeuvres complètes di Vilfredo Pareto (1966, ed Busino G). Manual of Political Economy (1971, Engl transl, Schwier AS, Page AN, eds). Scholars Book Shelf, New YorkGoogle Scholar
  51. Phillips K-A, Glendon G, Knight JA (1999) Putting the risk of breast cancer in perspective. N Engl J Med 340:141–144CrossRefGoogle Scholar
  52. Pratt JW, Raiffa H, Schlaifer R (1996) Introduction to statistical decision theory. MIT Press, Cambridge, MAzbMATHGoogle Scholar
  53. RIS (2006) Rechtsinformationssystem des Bundes. Geschäftszahl Arzthaftung im Falle der Geburt eines behinderten Kindes. 5Ob165/05h. 7.3.2006 (Law Information System of the Republic of Austria. Liability of a doctor in case of a wrongful birth). Accessed 30 Mar 2019
  54. Robert-Koch-Institut (eds) (2013) Krebs in Deutschland 2009/2010 (Cancer in Germany 2009/2010). 9 ed. Robert Koch-Institut und Gesellschaft der epidemiologischen Krebsregister in Deutschland eV. Accessed 30 Mar 2019
  55. Rubin A, Rubin H (2018) Research, political donations and marketing by the drug industry – a challenge – Part II of a II part series. A website for senior citizens and those who care about them. Accessed 30 Mar 2019
  56. Sandblom G, Varenhorst E, Rosell J Löfman O, Carlsson P (2011) Randomised prostate cancer screening trial: 20year follow-up. Br Med J Online 342. Accessed 30 Mar 2019CrossRefGoogle Scholar
  57. Skorupski WP, Wainer H (2016) Breast cancer screenings: does the evidence support the recommendations? Significance 13(4):24–27CrossRefGoogle Scholar
  58. Spiegelhalter D (2012) Using speed of ageing and “microlives” to communicate the effects of lifetime habits and environment. Br Med J 345:e8223. Accessed 30 Mar 2019CrossRefGoogle Scholar
  59. Spiegelhalter D (2014) What can education learn from real-world communication of risk and uncertainty? Invited lecture at the Eight British Congress on Mathematical Education, Nottingham, AprilGoogle Scholar
  60. Spiegelhalter D, Gage J (2015) What can education learn from real-world communication of risk and uncertainty? Math Enthus 12(1–3):4–10. Accessed 30 Mar 2019
  61. Spiegelhalter D, Pearson M, Short I (2011) Visualizing about the future. Science 333:1393–1400CrossRefGoogle Scholar
  62. Statistik Austria (2014) Krebsinzidenz und Krebsmortalität in Österreich 2014 (Incidence and mortality of cancer in Austria 2014). Accessed 30 Mar 2019
  63. Stattmann C (2018) Impairment-Modellierung im Lichte des International Financial Reporting Standard 9 (IFRS 9) – Expected Credit Loss unter Beachtung makroökonomischer Einflussfaktoren (Impairment modelling in the light of the new International Financial Reporting Standard 9 (IFRS 9) – expected credit loss including macro-economic factors). University of Klagenfurt, Masters’ thesisGoogle Scholar
  64. Thaler RH, Sunstein CR (2008) Nudge. Improving decisions about health, wealth, and happyness. Yale University Press, New Haven/LondonGoogle Scholar
  65. Todd PM, Gigerenzer G (2000) Précis of simple heuristics that make us smart. Behav Brain Sci 23:727–780CrossRefGoogle Scholar
  66. Tversky A, Kahneman D (1974) Judgment under uncertainty: Heuristics and biases. Science 185:1124–1130CrossRefGoogle Scholar
  67. van der Steeg AFW, Keyzer-Dekker CMG, De Vries J, Roukema JA (2011) Effect of abnormal screening mammogram on quality of life. Br J Surg 98:542–543CrossRefGoogle Scholar
  68. Verein Brustkrebs Info eV (n.d.) Brustkrebs Info (Breast Cancer Information Brochure). Accessed 30 Mar 2019
  69. Waine H (2011) How should we screen for breast cancer? Using evidence to make medical decisions. Significance 8(1):28–30CrossRefGoogle Scholar
  70. Wewetzer H (2005) „„Der Nutzen ist fraglich“. Der Psychologe Gerd Gigerenzer über Sinn und Unsinn der Brustkrebs-Reihenuntersuchungen (“The benefit is questionable”. Psychologist Gerd Gigerenzer on the sense and nonsense of breast-cancer screening). Der Tagesspiegel, 1.6.2005. Accessed 30 Mar 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Statistics, Alpen-Adria-Universität KlagenfurtKlagenfurtAustria

Section editors and affiliations

  • Bharath Sriraman
    • 1
  1. 1.Department of Mathematical SciencesThe University of MontanaMissoulaUSA

Personalised recommendations