Abstract
Five years after Charles Darwin put forward his theory of Natural Selection, Herbert Spencer coined the phrase “survival of the fittest.” Survival of the fittest implies that individuals with highest fitness will survive and will pass on their traits – as required for evolution. Since then, scholars have struggled to mathematically model genetic change, inheritance, and selection, and further to define “fitness” to understand how fitness changes in a population over time. For about 90 years, the goal has been to prove that fitness continually increases – fitness maximization – in line with traditional expectation.
This chapter presents the history of this issue to date, including proving a new simple and elegant formula for the fundamental theorem of natural selection with mutations, and a new application of the fundamental theorem of dynamical systems to evolutionary models which constrains the possible concept of fitness maximization.
Taking a mathematical modeling perspective, we present both experimental genetics and mathematical models. Field biology researchers have observed that generally populations are either in stasis or are in fitness decline, and many mathematicians modeling genetics have rejected the very idea of general fitness maximization. We consider a variety of mutation-selection models, from Fisher’s early work, mutation-limited models that consider one mutation at a time, models that consider a distribution of simultaneous mutations, to the most comprehensive numerical simulations. We conclude that fitness is best understood in terms of net functionality (not just reproduction rate), and that fitness maximization is not a robust biological principle.
Similar content being viewed by others
References
Aris-Brosou S (2019) Direct evidence of an increasing mutational load in humans. Mol Biol Evol 36(12):2823–2829. https://doi.org/10.1093/molbev/msz192
Barton NH, Briggs DE, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Press, Cold Spring Harbor
Basener W (2013) Limits of chaos and progress in evolutionary dynamics. Biol Inform New Perspect:87–104. https://www.worldscientific.com/doi/abs/10.1142/9789814508728_0004
Basener WF, Sanford JC (2018) The fundamental theorem of natural selection with mutations. J Math Biol (Springer) 76:1589–1622. https://doi.org/10.1007/s00285-017-1190-x
Bataillon T (2000) Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84:497–501. https://doi.org/10.1046/j.1365-2540.2000.00727.x. Accessed May 2020
Bateson W, Saunders ER, Punnett RC (1904) Reports to the evolution committee of the Royal Society. Harrison and Sons, London. Printers. https://archive.org/details/RoyalSociety.ReportsToTheEvolutionCommittee.ReportIi.Experimental. Accessed 9 Mar 2020
Baumgardner J, Brewer W, Sanford JC (2013) Can synergistic epistasis halt mutation accumulation? Results from numerical simulation. In: Marks RJ, Behe MJ, Dembski WA, Gordon B, Sanford JC (eds) Biological information – new perspectives. World Scientific, Ithaca, pp 338–368, 312–337
Behe M (2010) Experimental evolution, loss-of-function mutations, and “the first rule of adaptive evolution”. Q Rev Biol 85(4):419–445
Bhattacharjee Y (2014) The vigilante. Science 343(6177):1306–1309
Bialek W (2012) Biophysics: searching for principles. Princeton University Press, Princeton
Bialek W (2015) More perfect than we imagined: a physicist’s view of life. https://www.cornell.edu/video/william-bialek-physicists-view-of-life. Accessed 21 Feb 2020
Birch J (2015) Natural selection and the maximization of fitness. Biol Rev 91(3). https://doi.org/10.1111/brv.12190
Boveri T (1904) Ergebnisse über die Konstitution der chromatischen Substanz des Zelkerns. Gustav Fischer Verlag, Jena
Bowler PJ (1983) The eclipse of Darwinism: anti-Darwinian evolutionary theories in the decades around 1900. Johns Hopkins University Press, Baltimore
Bowler PJ (2003) Evolution: the history of an idea. University of California Press, Berkely and Los Angeles
Brewer W, Smith F, Sanford J (2013a) Information loss: potential for accelerating natural genetic attenuation of RNA viruses. In: Biological information new perspectives. World Scientific, Ithaca, pp 369–384
Brewer W, Sanford JC, Baumgardner J (2013b) Using numerical simulation to test the “mutation-count” hypothesis. In: Marks RJ, Behe MJ, Dembski WA, Gordon BL, Sanford JC (eds) Biological information – new perspectives. World Scientific, Ithaca, pp 298–311
Bull JJ, Meyers LA, Lachmann M (2005) Quasispecies Made Simple. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.0010061
Bürger R (1989) Mutation-selection models in population genetics and evolutionary game theory. In: Kurzhanski AB, Sigmund K (eds) Evolution and control in biological systems. Springer, Dordrecht
Carter RC, Sanford JC (2012) A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918. Theor Biol Med Model 9(42). https://doi.org/10.1186/1742-4682-9-42
Caswell H (1989) Matrix polulation modles. Sinauer Associates, Sunderland
Charlesworth B (2012) The effects of deleterious mutations on evolution at linked sites. Genetics 190(1):5–22. https://doi.org/10.1534/genetics.111.134288
Charlesworth B, Charlesworth D (2009) Darwin and genetics. Genetics 183(3). https://doi.org/10.1534/genetics.109.109991
Conley C (1978) Isolated invariant sets and the Morse index. CBMS regional conference series 38. American Mathematical Society, Providence
Cosens D, Briscoe D (1972) A switch phenomenon in the compound eye of the white-eyed mutant of Drosophila melanogaster. J Insect Physiol 18(4):627–632. https://doi.org/10.1016/0022-1910(72)90190-4. Accessed 9 Mar 2020
Crotty S, Cameron CE, Andino R (2001) RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98(12):6895–6900. https://doi.org/10.1073/pnas.111085598
Crow JF, Kimura M (1970) An introduction to population genetics theory. Blackburn Press, Caldwell. (Reprint ed.)
Darwin C (1868) The variation of animals and plants under domestication. Print
Darwin C (1959) Origin of species. Harvard Classics, P.F. Collier & Son, New York
Davies NB, Krebs JR, West SA (2012) An introduction to behavioural ecology. Wiley-Blackwell, Hoboken
DeVries H (1889) Intracellular pangenesis. The Open Court Publishing (1910 Translation). http://www.esp.org/books/devries/pangenesis/facsimile/. Accessed 8 Mar 2020
DeVries H (1901–1903) Die Mutationstheorie. Versuche und Beobachtungen über die Entstehung von Arten im Pflanzenreichh, zwei Bänder. Veit, Leipzig
Diekmann J, Metx A, O. (1986) The dynamics of physiologically structured populations. Springer Verlag, Berlin
Dodson SI, Allen TFH, Carpenter SR, Ives AR, Jeane RL, Kitchell JF, Langston NE (1998) Ecology. Oxford University Press, Oxford
Dunham I, Kundaje A, Aldred S, Collins PJ, Davis CA, Doyle F (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414). https://doi.org/10.1038/nature11247
Edwards AWF (2007) Maximizations principles in evolutionary biology. In: Matthen M, Stephens C (eds) Handbook of the philosophy of science: philosophy of biology. North-Holland, Amsterdam, pp 335–347
Eigen M (1971) Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften:465–523. https://doi.org/10.1007/BF00623322
Elena SF, Ekunwe L, Hajela N, Oden SA, Lenski RE (1998) Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102–103(1–6):349–358
Ewens WJ, Lessard S (2015) On the interpretation and relevance of the fundamental theorem of. Theor Popul Biol 104(2015):59–67. https://doi.org/10.1016/j.tpb.2015.07.002
Eyre-Walker A, Keightley PD (1999) High genomic deleterious mutation rates in hominids. Nature 397(6717):344–347
Falconer DS, Mackay FC (1996) Introduction to quantitative genetics. Longmans Green, Essex
Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78(2):737–756
Felsenstein J (1989) Mathematics vs. evolution. Science 246(4932):941–942
Felsenstein J (2017) Theoretical evolutionary genetics. Draft, Seattle. http://evolution.genetics.washington.edu/pgbook/pgbook.html. Accessed 28 Feb 2020
Felsenstein J (2018) Fisher memorial lecture 2018 by Joe Felsenstein. March 26. https://www.youtube.com/watch?v=ZF3nIMvBBDw&feature=youtu.be. Accessed 9 Mar 2020
Ferreiro MJ, Perez C, Mariana M, Santiago R, Caputi A, Aguilera P, Barrio R, Cantera R (2017) Drosophila melanogaster white mutant w1118 undergo retinal degeneration. Front Neurosci 11(732). https://doi.org/10.3389/fnins.2017.00732
Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford, UK. https://doi.org/10.5962/bhl.title.27468. Accessed 9 Mar 2020
Fisher RA (1999 edition) The genetical theory of natural selection – a complete variorum edition. Ed H Bennett. Oxford University Press, Oxford, UK
Frank SA, Slatkin M (1992) Fisher’s fundamental theorem of natural selection. Trends Ecol Evol 7(3):92–95
Gauger EM, Rieper E, Morton JJ, Benjamin SC, Vedral V (2011) Sustained quantum coherence and entanglement in the avian compass. Phys Rev Lett. https://doi.org/10.1103/physrevlett.106.040503
Geritz SAH, Metx JAJ, Nisbet RM (1992) How should we define “fitness” for general ecological scenarios? Trends Ecol Evol 7(6):198–202
Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103(1–6):127–144
Graur D (2016) Rubbish DNA. arXiv. Electronic. Comp. Cornell University. Cornell University, Ithaca. 22 Jan. https://arxiv.org/abs/1601.06047. Accessed 28 Feb 2020
Graur D (2013) How to assemble a human genome. Society of Molecular Biology and Evoluiton/Spanish Society for Evolutionary Biology. https://www.slideshare.net/dangraur1953/update-version-of-the-smbesesbe-lecture-on-encode-junk-dna-graur-december-2013. Accessed 5 Mar 2020
Grodwohl J-B (2017) “The theory was beautiful indeed”: rise, fall and circulation of maximizing methods in population genetics (1930–1980). J Hist Biol 50:571–608
Guijarr-Clarke C, Holland PW, Paps J (2020) Widespread patterns of gene loss in the evolution of the animal kingdom. Nat Ecol Evol
Hald A (1998) A history of mathematical statistics. Wiley, New York
Haldane JB (1932 (1990 reprint)) The causes of evolution. Princeton University Press, Princeton
Hall DG (1982) Chromosomal mutation for citrate utilization by Escherichia coli. J Bacteriol 151:269–273
Harris CL (1981) Evolution: genesis and revelations: with readings from Empedocles to Wilson. State University of New York Press, Albany
Herron JC, Freeman S (2014) Evolutionary analysis, 5th edn. Upper Saddle River, New Jersey, Pearson Prentice Hall
Hofbauer J (1985) The selection mutation equation. J Math Biol:41–53. https://doi.org/10.1007/BF00276557
Hössjer O, Bechly G, Gauger A (2018) Phase-type distribution approximations of the waiting time until coordinated mutations get fixed in a population. In: Silvestrov S, Malyarenko A, Rancic M (eds) Stochastic processes and algebraic structures – from theory towards applications, Springer proceedings in mathematics and statistics, pp 245–313. https://doi.org/10.1007/978-3-030-02825-1_12
Huxley J (1942) Evolution: the modern synthesis. Allen and Unwin, London
Johannsen WL (1903) Om arvelighed i samfund og i rene linier. Oversigt over Det Kongelige Danske Videnskabernes Selskabs Forhandlingerm 3:247–270
Kibota TT, Lynch M (1996) Estimate of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381(6584):694–696. https://doi.org/10.1038/381694a0
Kimura M (1965) Attainment of quasi linkage equilibrium when gene frequencies are changing by natural selection. Genetics 52:875–890
Kimura M (1979) Model of effectively neutral mutations in which selective constraint is incorporated. Proc Natl Acad Sci U S A 76(7):3440–3444. https://doi.org/10.1073/pnas.76.7.3440
Kimura M, Maruyam T (1966) The mutational load with epistatic gene interactions in fitness. Genetics 54(6):1337–51
Kolter ERZ, R. (2004) Escherichia coli evolution during stationary phase. Res Microbiol:328–336. https://doi.org/10.1016/j.resmic.2004.01.014
Kondrashov A (1995) Contamination of the genome by very slightly deleterious mutations. J theoret Biol 175:583–594
Kondrashov A (2017) Crumbling genome: the impact of deleterious mutations on humans. John Wiley and sons, Hoboken
Koonin E (2011) The logic of chance: the nature and origin of biological evolution. FT Press, Upper Saddle River
Kot W, Schaffer M, M. (1985) Do strange attractors govern ecological systems? Bioscience 35(6):342–350
Kruuk LEB, Clutton-Brock T, Slate J, Pemberton J, Brotherstone S, Guinness F (2000) Heritability of fitness in a wild mammalian population. PNAS 97(2):698–703
Leroi A (2011) WHO is the greatest biologist of all time? https://www.edge.org/conversation/who-is-the-greatest-biologist-of-all-time. Accessed 9 Mar 2020
Lewontin R (2003) Four complications in understanding the evolutionary process. Santa Fe Institute Bulletin (Santa Fe Institute). https://sfi-edu.s3.amazonaws.com/sfi-edu/production/uploads/publication/2016/10/31/winter2003v18n1.pdf. Accessed 28 Feb 2020
Lynch M (2010a) Rate, molecular spectrum, and consequences of human mutation. PNAS 107(3):961–968. www.pnas.org/cgi/doi/10.1073/pnas.0912629107
Lynch M (2010b) Evolution of the mutation rate. Trends Genet 26(8):345–352. https://doi.org/10.1016/j.tig.2010.05.003
Lynch M (2016) The origins of genome complexity. Sinauer Associates, Sunderland
Lynch M, Burger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84(5):339–344. https://doi.org/10.1093/oxfordjournals.jhered.a111354
Michod RE (1999) Darwinian dynamics: evolutionary tranistions in fitness and individuality. Princeton Univerity Press, Princeton
Minnich S, Van Hofwegen D, Hovde C (2016) Rapid evolution of citrate utilization by Escherichia coli by direct selection requires citT and dctA. J Bacteriol 198(7) https://jb.asm.org/content/jb/198/7/1022.full.pdf
Morgan TH, Sturtevant AH, Muller HJ, Bridges CB (1915) The mechanism of Mendelian heredity. Henry Holt, New York. http://www.esp.org/books/morgan/mechanism/facsimile/. Accessed 9 Mar 2020
Muller HJ (1928) The problem of genic modification. In: Proceedings of the 5th International Congres, Supplementband of the Z. indukt. Abstamm.-u. Vererb-Lehre, pp 234–260
Muller HJ (1932) Some genetic aspects of sex. Am Nat 66(703):118–138. https://doi.org/10.1086/280418
Muller H (1950) Our load of mutations. Am J Hum Genet 2:111–176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716299/pdf/ajhg00429-0003.pdf. Accessed 28 Feb 2020
Muller H (1964) The relation of recombination to mutational advance. Mutat Res:2–9. https://doi.org/10.1016/0027-5107(64)90047-8
Nachman MW, Crowell SL (2000) Estimate of the mutation rate per nucleotide in humans. Genetics 156(1):297–304
Nelson C, Sanford JC (2011) The effects of low-impact mutations in digital organisms. Theor Biol Med Model 8:9
Nelson CW, Sanford JC (2013) Computational evolution experiments reveal a net loss of genetic information despite selection. In: Marks RJ, Behe MJ, Dembski WA, Gordon BL, Sanford JC (eds) Biological information new perspectives. World Scientific, Ithaca, pp 338–368
Nortan DE (1995) The fundamental theorem of dynamical systems. Comment Math Univ Carol 36(3):585–597. http://emis.matem.unam.mx/journals/CMUC/pdf/cmuc9503/norton.pdf
Nowak MA (2006) Evolutionary dynamics: exploring the equations of life. Harvard University Press, Harvard
Ohno S (1972) So much “junk” DNA in our genome. Brookhaven Symp Biol. http://www.junkdna.com/ohno.html. Accessed 4 Mar 2020
Ohta T (1977) Molecular evolution and polymorphism. Natl Inst Genet Mishima Jpn 76:148–167
Pennisi E (2013) The man who bottled evolution. Science 342(6160):790–793. https://science.sciencemag.org/content/342/6160/790.summary
Phillips PC (2008) Epistasis–the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9(11):855–867. https://doi.org/10.1038/nrg2452
Plutynski A (2006) What was Fisher’s fundamental theorem of natural selection and what was it for? Stud Hist Phil Biol Biomed Sci 37(1):59–82
Price GR (1972) Fisher’s “fundamental theorem” made clear. Ann Hum Genet 36(2):129–140
Quammen D (2006) The reluctant Mr. Darwin. Atlas Books, Norton
Queller DC (2017) Fundamental theorems of evolution. Am Nat 189(4):345–353
Razvan MR (2004) On Conley’s fundamental theorem of dynamical systems. Int J Math Math Sci. https://doi.org/10.1155/S0161171204202125
Rice SH (2004) Evolutionary theory: mathematical and conceptual foundations. Sinauer Associates, Sunderland
Roberts HF (1929) Plant hybridization before Mendel. Princeton University Press, Princeton
Roff DA (1992) The evolution of life histories: theory and analysis. Chapman and HAll, New York
Royal Society (2020) The Royal Society, science in the making. https://makingscience.royalsociety.org/s/rs/people/fst00034451. Accessed 9 Mar 2020
Sanford JC (2019) Mendel’s accountant genetic macroevolution simulation. November 10. https://github.com/genetic-algorithms/mendel-go/wiki. Accessed 07 Mar 2020
Sanford J, Nelson C (2012) The next step in understanding population dynamics: comprehensive numerical simulation. In: Carmen Fustú M (ed) Studies in population genetics. ISBN: 978-953-51-0588-6 InTech. https://www.intechopen.com/books/studies-in-population-genetics/the-next-step-in-understanding-population-dynamics-comprehensive-numerical-simulation
Sanford JC, Baumgardner J, Gibson P, Brewer W, ReMine W (2007a) Mendel’s accountant: a biologically realistic forward-time population genetics program. Scalable Comput: Pract Exper 8(2):147–165
Sanford JC, Baumgardner J, Gibson P, Brewer W, ReMine W (2007b) Using computer simulation to understand mutation accumulation dynamics and genetic load. In: Shi Y, van Albada GD, Dongarra J, Sloot PM (eds) International conference on computational science. Springer, Berlin/Heidelberg, pp 386–392
Sanford JC, Baumgardner J, Brewer W (2013) Selection threshold severely constrains capture of beneficial mutations. In: Biological information – new perspectives. World Scientific, Ithaca, pp 264–297
Sanford JC, Brewer W, Smith F, Baumgardner J (2015) The waiting time problem in a model Hominin population. Theor Biol Med Model 12(18). https://doi.org/10.1186/s12976-015-0016-z
Sarraf MA, Woodley MA, Feltham C (2019) Making the case for mutation accumulation. In: Modernity and cultural decline. Palgrave Macmillan, Cham, pp 197–228. https://doi.org/10.1007/978-3-030-32984-6_6
Schneider D, Wielgoss S, Barrick J, Tenaillon O, Cruveiller S, Chane-Woon-Ming B, Médigue C, Lenski R (2011) Mutation rate inferred from synonymous substitutions in a long-term evolution experiment with Escherichia coli. G3 Genomes Genetics 1(3):183–186
Schneider D, Raeside C, Gaffe J, Deatherage DE, Tenaillon O, Briska AM, Ptashkin RN, Cruveiller S, Medigue C, Lenski RE, Barrick JE (2014) Large chromosomal rearrangements during a long-term evolution experiment with Escherichia coli. Am Soc Microbiol 156(2):1–13
Solé V, Sardanyés J, Ricard (2007) Red queen strange attractors in host–parasite replicator gene-for-gene coevolution. Chaos, Solitons Fractals 32(5):1666–1678
Stamhuis IH (2003) The reactions on Hugo de Vries’s intracellular pangenesis; the discussion with August Weismann. J Hist Biol 36(1):119–152
Stamhuis IH, Meijer OG, Zevenhuizen EJ (1999) Hugo De Vries on heredity, 1889–1903. Statistics, Mendelian Laws, Pangenes, mutations. Isis 90(2):238–267. https://doi.org/10.1086/384323. Accessed 8 Mar 2020
Sutton WS (1903) The chromosomes in heredity. Biol Bull 4:231–251. https://www.journals.uchicago.edu/doi/pdfplus/10.2307/1535741. Accessed 8 Mar 2020
Teicher A (2018) Caution, overload: the troubled past of genetic load. Genetics:747–755. https://doi.org/10.1534/genetics.118.301093
Tuljapurkar S (1990) Population dynamics in variable environments. Springer-Verlag, New York
Walsh B, Lynch M (2018) Evolution and selection of quantitative traits. Oxford University Press, Oxford
Wielgoss S, Barrick J, Tenaillon O, Wiser M, Dittmar WJ, Cruveiller S, Chane-Woon-Ming B, Medigue C, Lenski RE (2013) Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc Natl Acad Sci 110(1):222–227
Wilke CO (2005) Quasispecies theory in the context of population genetics. BMC Evol Biol. https://doi.org/10.1186/1471-2148-5-44
Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays 35(9):829–837
Xiao C, Qiu S, Meldrum Robertson R (2017) The white gene controls copulation success in Drosophila melanogaster. Sci Rep 7. https://doi.org/10.1038/s41598-017-08155-y
Zhang SD, Odenwald WF (1995) Misexpression of the white (w) gene triggers male-male courtship in Drosophila. Proc Natl Acad Sci U S A 92(12):5525–5529. https://doi.org/10.1073/pnas.92.12.5525
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this entry
Cite this entry
Basener, W., Cordova, S., Hössjer, O., Sanford, J. (2021). Dynamical Systems and Fitness Maximization in Evolutionary Biology. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_121-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-70658-0_121-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70658-0
Online ISBN: 978-3-319-70658-0
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering