Skip to main content

Visualizing Four Dimensions in Special and General Relativity

  • Living reference work entry
  • First Online:
Handbook of the Mathematics of the Arts and Sciences

Abstract

Modern physics unfolds on the stage of four-dimensional spacetime. Grappling with century-old ideas of space and time, Albert Einstein revolutionized our understanding of the cosmos by merging space and time into a four-dimensional entity that takes an active role in shaping the laws of physics. While experiments have repeatedly confirmed Einstein’s theories, the abstract character of this physical knowledge contradicts the common sense of many. Based on the physics of relativity and the mathematics of differential geometry, scientists have developed visualizations and representations of spacetime to make Einstein’s ideas more intelligible. This chapter explores the links between the mathematics of space and time and our historic struggle to visualize these concepts. Technology serves as the lens to unpack the fruitful interplay between mathematics, physics, and arts that has shaped our understanding of spacetime. Linking mathematical concepts with physical intuition and artistic vision, imaginative thinkers developed representations that led from simple spacetime diagrams and analogies to powerful numerical simulations and virtual environments that allow exploring the extreme physics of black holes and gravitational waves. Visualizations of spacetime continue to be an active field of research that is driven by interdisciplinary efforts to understand the cosmos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott BP et al (2016) Observation of gravitational waves from a Binary Black Hole Merger. Phys Rev Lett 116(6):061102

    Article  MathSciNet  Google Scholar 

  • Akiyama K et al (2019) First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys J 875(1):L1

    Google Scholar 

  • Alcubierre M, Brugmann B (2001) Simple excision of a black hole in 3+1 numerical relativity. Phys Rev D 63(10):104006

    Article  MathSciNet  Google Scholar 

  • Anninos P, Camarda K, Masso J, Seidel E, Suen W-M, Towns J (1995) Three dimensional numerical relativity: the evolution of black holes. Phys Rev D 52(4):2059–2082

    Article  MathSciNet  Google Scholar 

  • Arnowitt R, Deser S, Misner CW (1962) The dynamics of general relativity. In: Witten L (ed) Gravitation: an introduction to current research. Wiley, New York, p 227

    Google Scholar 

  • Baumgarte TW, Shapiro SL (2010) Numerical relativity. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Born M (1968) Bern’s colloquium, 1955. In: Physics in my generation. Springer, New York

    Google Scholar 

  • Brandt S, Bruegmann B (1997) A simple construction of initial data for multiple black holes. Phys Rev Lett 78(19):3606–3609

    Article  Google Scholar 

  • Carbone L, Bond C, Brown D, Brückner F, Grover K, Lodhia D, Mingarelli CM, Fulda P, Smith RJ, Unwin R, Vecchio A, Wang M, Whalley L, Freise A (2012) Computer-games for gravitational wave science outreach: Black hole pong and space time quest. J Phys Conf Ser 363(1):012057

    Article  Google Scholar 

  • Carroll SM (2003) Spacetime and geometry: an introduction to general relativity. Pearson, Chicago

    Google Scholar 

  • Chandler M (1994) Philosophy of gravity: intuitions of four- dimensional curved spacetime. Sci Educ 3(2):155–176

    Article  MathSciNet  Google Scholar 

  • Chandrasekhar S (1992) A mathematical theory of black holes. Oxford University Press, New York

    Google Scholar 

  • Cole KC (2019) The simple idea behind Einstein’s greatest discoveries. Quanta Magazine, https://www.quantamagazine.org/einstein-symmetry-and-the-future-of-physics-20190626/

    Google Scholar 

  • Durell CV (1926) Readable relativity. G. Bell & Sons LTD., London

    Book  MATH  Google Scholar 

  • Einstein A (1905) Zur Elektrodynamik bewegter Körper [On the electrodynamics of moving bodies]. Annalen der Physik 17(10):891–921

    Article  MATH  Google Scholar 

  • Einstein A (1915) Grundgedanken der allgemeinen Relativitätstheorie und Anwendung dieser Theorie in der Astronomie [Fundamental ideas of the general theory of relativity and the application of this theory in astronomy]. Preussische Akademie der Wissenschaften, Satzungsberichte 1(1):315

    Google Scholar 

  • Galison P (1979) Minkowski’s spacetime: from visual thinking to the absolute world. Hist Stud Phys Sci 10:85–121

    Article  Google Scholar 

  • Gamow G (1940) Mr Tompkins in wonderland. Cambridge University Press, Cambridge, reprint 19 edition

    Google Scholar 

  • Goodman AA (2012) Principles of high-dimensional data visualization in astronomy. Astron Nachr 333(5–6):505–514

    Article  Google Scholar 

  • Guidry M (2019) Modern general relativity: black holes, gravitational waves, and cosmology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hartle JB (2003) Gravity: an introduction to Einstein’s general relativity. Addison-Wesley, San Francisco

    Google Scholar 

  • Heidegger M (1977) The question concerning technology. In: The question concerning technology and other essays. Harper and Row, New York

    Google Scholar 

  • Hentschel K (ed) (1998) The collected papers of Albert Einstein, Volume 8 (English) The Berlin years: correspondence, 1914–1918. Princeton University Press, Princeton

    Google Scholar 

  • Hesse M (1953) Models in physics. Br J Philos Sci 4:98–214

    Google Scholar 

  • James O, von Tunzelmann E, Franklin P, Thorne KS (2015) Visualizing interstellar’s wormhole. Am J Phys 83(6):486–499

    Article  Google Scholar 

  • Kapon S, DiSessa AA (2012) Reasoning through instructional analogies. Cogn Instr 30(3):261–310

    Article  Google Scholar 

  • Kersting M, Steier R (2018) Understanding curved spacetime – the role of the rubber sheet analogy in learning general relativity. Sci Educ 27(7):593–623

    Article  Google Scholar 

  • Key JS, Hendry M (2016) Defining gravity. Nat Phys 12(6):524–525

    Article  Google Scholar 

  • Kraus U (2008) First-person visualizations of the special and general theory of relativity. Eur J Phys 29(1):1–13

    Article  MathSciNet  Google Scholar 

  • Minkowski H (1909) Raum und Zeit [Space and Time]. Jahresbericht Deutscher Mathematischer Verein 18:75–88

    Google Scholar 

  • Minkowski H (1915) Das Relaitivitätsprinzip [The principle of relativity]. Jahresbericht Deutscher Mathematischer Verein 24:372–382

    MATH  Google Scholar 

  • Owen R, Brink J, Chen Y, Kaplan JD, Lovelace G, Matthews KD, Nichols DA, Scheel MA, Zhang F, Zimmerman A, Thorne KS (2011) Frame-dragging vortexes and tidal tendexes attached to colliding black holes: visualizing the curvature of spacetime. Phys Rev Lett 106(15):4–7

    Article  Google Scholar 

  • Petkov V (2014) Physics as spacetime geometry. In: Springer handbook of spacetime. Springer, Berlin, pp 141–164

    Chapter  MATH  Google Scholar 

  • Petkov V, Ashtekar A (eds) (2014) Springer handbook of spacetime. Springer, Berlin

    MATH  Google Scholar 

  • Pretorius F (2005) Evolution of binary black-hole spacetimes. Phys Rev Lett 95(12):121101

    Article  MathSciNet  Google Scholar 

  • Ruder H, Weiskopf D, Nollert HP, Müller T (2008) How computers can help us in creating an intuitive access to relativity. New J Phys 10:125014

    Article  Google Scholar 

  • Russell B (1925) ABC of relativity. Allen & Unwin, London

    Google Scholar 

  • Stark RF, Piran T (1985) Gravitational-wave emission from rotating gravitational collapse. Phys Rev Lett 55(8):891–894

    Article  Google Scholar 

  • Steier R, Kersting M (2019) Metaimagining and embodied conceptions of spacetime. Cogn Instr 37(2):145–168

    Article  Google Scholar 

  • Varma V (2019) Black hole simulations: from supercomputers to your laptop. Ph.D. thesis

    Google Scholar 

  • Varma V, Stein LC, Gerosa D (2019) The binary black hole explorer: on-the-fly visualizations of precessing binary black holes. Classical and Quantum Gravity 36(9):095007

    Article  MathSciNet  Google Scholar 

  • Vygotsky LS (1998) The collected works of L. S. Vygotsky, 5th edn. Springer, New York

    Google Scholar 

  • Wald RM (1984) General relativity. The University of Chicago Press, Chicago

    Book  MATH  Google Scholar 

  • Walter S (2014) The historical origins of spacetime. In: Petkov V, Ashtekar A (eds) Springer handbook of spacetime. Springer, Berlin

    MATH  Google Scholar 

  • Weiskopf D, Borchers M, Ertl T, Falk M, Fechtig O, Frank R, Grave F, King A, Kraus U, Müller T, Nollert H-P, Rica Mendez I, Ruder H, Schafhitzel T, Schär S, Zahn C, Zatloukal M (2006) Explanatory and illustrative visualization of special and general relativity. IEEE Trans Vis Comput Graph 12(4):522–34

    Article  Google Scholar 

  • Wheeler JA (1998) Geons, black holes, and quantum foam: a life in physics. W.W. Norton&Company, New York

    Google Scholar 

  • Woodhouse NMJ (2014) Relativity today. In: Petkov V, Ashtekar A (eds) Springer handbook of spacetime. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kersting .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kersting, M. (2020). Visualizing Four Dimensions in Special and General Relativity. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_120-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_120-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics