Abstract
Artistic solutions of individual combinatorial games sometimes involve exotic numeration systems and the golden section. Via demonstrated group structure, abstract game comparison can boil down to play on individual games. Generalizations of classical games may lose mathematical tractability but gain in artistic visualization.
This is a preview of subscription content, access via your institution.


References
Beatty S (1926) Problem 3173. The American Mathematical Monthly
Berlekamp ER, Conway JH, Guy RK (2001) Winning ways for your mathematical plays, vol 1–4, 2nd edn. A K Peters, Ltd., Natick
Berstel J (1986) Fibonacci words—a survey. In: The book of L. Springer, pp 13–27
Bouton CL (1901) Nim, a game with a complete mathematical theory. Ann Math 3(1/4):35–39
Cole AJ, Davie A (1969) A game based on the Euclidean algorithm and a winning strategy for it. Math Gaz 53(386):354–357
Conway JH (2000) On numbers and games, 2nd edn. AK Peters/CRC Press
Cook M, Larsson U, Neary T (2017) A cellular automaton for blocking queen games. Nat Comput 16(3):397–410
Duchene E, Frankel AS, Gurvich V, Ho NB, Kimberling C, Larsson U (2019) Wythoff visions. In: Larsson U (ed) Games of no chance 5. Mathematical sciences research institute publications, vol 70. Cambridge University Press, pp 35–87
Ettinger JM (1996) Topics in combinatorial games. PhD thesis, University of Wisconsin–Madison
Fink A (2012) Lattice games without rational strategies. J Combin Theory Ser A 119(2):450–459
Friedman E, Garrabrant SM, Phipps-Morgan IK, Landsberg AS, Larsson U (2019) Geometric analysis of a generalized wythoff game. In: Larsson U (ed) Games of no chance 5. Mathematical sciences research institute publications, vol 70. Cambridge University Press, pp 351–380
Gardner M (1989) Penrose tiles to trapdoor ciphers. Freeman, New York. Chapter 8, section 6, “corner the lady”
Grundy PM (1939) Mathematics and games. Eureka 2(6–8):21
Hanner O (1959) Mean play of sums of positional games. Pac J Math 9(1):81–99
Isaacs RP, Berge C (1962) The theory of graphs and its applications. London: Methuen & Co; New York: Wiley, Chap. 6
Larsson U (2011) Blocking Wythoff nim. Electron J Comb 18(1):120
Larsson U (2014) Wythoff nim extensions and splitting sequences. J Integer Sequences 17(2):3
Larsson U, Wästlund J (2014) Maharaja nim: Wythoff’s queen meets the knight. Integers 14(G05)
Larsson U, Wästlund J (2013) From heaps of matches to the limits of computability. Electron J Comb 20(3):P41
Larsson U, Hegarty P, Fraenkel AS (2011) Invariant and dual subtraction games resolving the duchêne–rigo conjecture. Theor Comput Sci 412(8-10):729–735
Larsson U, Nowakowski RJ, Neto JP, Santos CP (2016a) Guaranteed scoring games. Electron J Comb 23(3):3–27
Larsson U, Nowakowski RJ, Santos CP (2016b) Absolute combinatorial game theory. arXiv preprint arXiv:160601975
Larsson U, Nowakowski RJ, Santos CP (2018a) Game comparison through play. Theor Comput Sci 725:52–63
Larsson U, Nowakowski RJ, Santos CP (2018b) Games with guaranteed scores and waiting moves. In: Special issue of combinatorial games, vol 47, Springer, pp 653–671
Larsson U (2012a) The *-operator and invariant subtraction games. Theor Comput Sci 422:52–58
Larsson U (2012b) A generalized diagonal wythoff nim. Integers 12(5):1003–1027
Larsson U (2013a) Impartial Games and Recursive Functions. Chalmers University of Technology
Larsson U (2013b) Impartial games emulating one-dimensional cellular automata and undecidability. J Comb Theory Ser A 5(120):1116–1130
Lekkerkerker CG (1952) Representation of natural numbers as a sum of Fibonacci numbers. Simon Stevin 29:190–195
Milnor J (1953) Sums of positional games. Contributions to the Theory of Games II 28:291–301
Ostrowski A (1922) Bemerkungen zur Theorie der Diophantischen Approximationen. Abh Math Sem Univ Hamburg 1(1):77–98. https://doi.org/10.1007/BF02940581
Ostrowski A, Hyslop J, Aitken A (1927) Solutions to problem 3173. Am Math Mon 34(3):159–160
Rayleigh JWSB (1896) The Theory of Sound, vol 2. Macmillan
Siegel AN (2013) Combinatorial Game Theory, vol 146. American Mathematical Soc.
Silber R (1976) A fibonacci property of wythoff pairs. Fibonacci Quart 14(4):380–384
Sprague R (1935) Uber mathematische kampfspiele. Tôhoku Math J 41:438–444
Stolarsky KB (1976) Beatty sequences, continued fractions, and certain shift operators. Can Math Bull 19(4):473–482. https://doi.org/10.4153/CMB-1976-071-6
Whinihan MJ (1963) Fibonacci nim. Fibonacci Quart 1(4):9–13
Wythoff WA (1907) A modification of the game of nim. Nieuw Arch Wisk 7(2):199–202
Zeckendorf E (1972) Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull Soc Roy Sci Liège 41:179–182
Acknowledgements
I thank the participants of the two introductory CGT workshops at Ohio State University and IIT-Bombay, organized by Dr. Érika B. Roldán Roa and Prof. Mallikarjuna Rao and Dr. Ravi Kant, respectively. They have inspired much of this book chapter. Thanks to Gal Cohensius, Melissa Huggan, Richard Nowakowski, Pia Moberg and family, Ofer Zivony, David Wahlstedt, Hans Ekbrand, and Silvia Heubach for comments that helped improve this chapter.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Section Editor information
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this entry
Cite this entry
Larsson, U. (2020). CombinArtorial Games. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_115-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-70658-0_115-1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70658-0
Online ISBN: 978-3-319-70658-0
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering