Skip to main content

CombinArtorial Games

  • Living reference work entry
  • First Online:

Abstract

Artistic solutions of individual combinatorial games sometimes involve exotic numeration systems and the golden section. Via demonstrated group structure, abstract game comparison can boil down to play on individual games. Generalizations of classical games may lose mathematical tractability but gain in artistic visualization.

This is a preview of subscription content, log in via an institution.

References

  • Beatty S (1926) Problem 3173. The American Mathematical Monthly

    Google Scholar 

  • Berlekamp ER, Conway JH, Guy RK (2001) Winning ways for your mathematical plays, vol 1–4, 2nd edn. A K Peters, Ltd., Natick

    MATH  Google Scholar 

  • Berstel J (1986) Fibonacci words—a survey. In: The book of L. Springer, pp 13–27

    MATH  Google Scholar 

  • Bouton CL (1901) Nim, a game with a complete mathematical theory. Ann Math 3(1/4):35–39

    Article  MathSciNet  MATH  Google Scholar 

  • Cole AJ, Davie A (1969) A game based on the Euclidean algorithm and a winning strategy for it. Math Gaz 53(386):354–357

    Article  MathSciNet  MATH  Google Scholar 

  • Conway JH (2000) On numbers and games, 2nd edn. AK Peters/CRC Press

    Book  Google Scholar 

  • Cook M, Larsson U, Neary T (2017) A cellular automaton for blocking queen games. Nat Comput 16(3):397–410

    Article  MathSciNet  MATH  Google Scholar 

  • Duchene E, Frankel AS, Gurvich V, Ho NB, Kimberling C, Larsson U (2019) Wythoff visions. In: Larsson U (ed) Games of no chance 5. Mathematical sciences research institute publications, vol 70. Cambridge University Press, pp 35–87

    Google Scholar 

  • Ettinger JM (1996) Topics in combinatorial games. PhD thesis, University of Wisconsin–Madison

    Google Scholar 

  • Fink A (2012) Lattice games without rational strategies. J Combin Theory Ser A 119(2):450–459

    Article  MathSciNet  MATH  Google Scholar 

  • Friedman E, Garrabrant SM, Phipps-Morgan IK, Landsberg AS, Larsson U (2019) Geometric analysis of a generalized wythoff game. In: Larsson U (ed) Games of no chance 5. Mathematical sciences research institute publications, vol 70. Cambridge University Press, pp 351–380

    Google Scholar 

  • Gardner M (1989) Penrose tiles to trapdoor ciphers. Freeman, New York. Chapter 8, section 6, “corner the lady”

    Google Scholar 

  • Grundy PM (1939) Mathematics and games. Eureka 2(6–8):21

    Google Scholar 

  • Hanner O (1959) Mean play of sums of positional games. Pac J Math 9(1):81–99

    Article  MathSciNet  MATH  Google Scholar 

  • Isaacs RP, Berge C (1962) The theory of graphs and its applications. London: Methuen & Co; New York: Wiley, Chap. 6

    Google Scholar 

  • Larsson U (2011) Blocking Wythoff nim. Electron J Comb 18(1):120

    Article  Google Scholar 

  • Larsson U (2014) Wythoff nim extensions and splitting sequences. J Integer Sequences 17(2):3

    MathSciNet  MATH  Google Scholar 

  • Larsson U, Wästlund J (2014) Maharaja nim: Wythoff’s queen meets the knight. Integers 14(G05)

    Google Scholar 

  • Larsson U, Wästlund J (2013) From heaps of matches to the limits of computability. Electron J Comb 20(3):P41

    Article  MathSciNet  MATH  Google Scholar 

  • Larsson U, Hegarty P, Fraenkel AS (2011) Invariant and dual subtraction games resolving the duchêne–rigo conjecture. Theor Comput Sci 412(8-10):729–735

    Article  MATH  Google Scholar 

  • Larsson U, Nowakowski RJ, Neto JP, Santos CP (2016a) Guaranteed scoring games. Electron J Comb 23(3):3–27

    MathSciNet  MATH  Google Scholar 

  • Larsson U, Nowakowski RJ, Santos CP (2016b) Absolute combinatorial game theory. arXiv preprint arXiv:160601975

    Google Scholar 

  • Larsson U, Nowakowski RJ, Santos CP (2018a) Game comparison through play. Theor Comput Sci 725:52–63

    Article  MathSciNet  MATH  Google Scholar 

  • Larsson U, Nowakowski RJ, Santos CP (2018b) Games with guaranteed scores and waiting moves. In: Special issue of combinatorial games, vol 47, Springer, pp 653–671

    Google Scholar 

  • Larsson U (2012a) The *-operator and invariant subtraction games. Theor Comput Sci 422:52–58

    Article  MathSciNet  MATH  Google Scholar 

  • Larsson U (2012b) A generalized diagonal wythoff nim. Integers 12(5):1003–1027

    Article  MathSciNet  MATH  Google Scholar 

  • Larsson U (2013a) Impartial Games and Recursive Functions. Chalmers University of Technology

    MATH  Google Scholar 

  • Larsson U (2013b) Impartial games emulating one-dimensional cellular automata and undecidability. J Comb Theory Ser A 5(120):1116–1130

    Article  MathSciNet  MATH  Google Scholar 

  • Lekkerkerker CG (1952) Representation of natural numbers as a sum of Fibonacci numbers. Simon Stevin 29:190–195

    MathSciNet  MATH  Google Scholar 

  • Milnor J (1953) Sums of positional games. Contributions to the Theory of Games II 28:291–301

    MathSciNet  MATH  Google Scholar 

  • Ostrowski A (1922) Bemerkungen zur Theorie der Diophantischen Approximationen. Abh Math Sem Univ Hamburg 1(1):77–98. https://doi.org/10.1007/BF02940581

    Article  MathSciNet  MATH  Google Scholar 

  • Ostrowski A, Hyslop J, Aitken A (1927) Solutions to problem 3173. Am Math Mon 34(3):159–160

    Article  Google Scholar 

  • Rayleigh JWSB (1896) The Theory of Sound, vol 2. Macmillan

    MATH  Google Scholar 

  • Siegel AN (2013) Combinatorial Game Theory, vol 146. American Mathematical Soc.

    Book  MATH  Google Scholar 

  • Silber R (1976) A fibonacci property of wythoff pairs. Fibonacci Quart 14(4):380–384

    MathSciNet  MATH  Google Scholar 

  • Sprague R (1935) Uber mathematische kampfspiele. Tôhoku Math J 41:438–444

    MATH  Google Scholar 

  • Stolarsky KB (1976) Beatty sequences, continued fractions, and certain shift operators. Can Math Bull 19(4):473–482. https://doi.org/10.4153/CMB-1976-071-6

    Article  MathSciNet  MATH  Google Scholar 

  • Whinihan MJ (1963) Fibonacci nim. Fibonacci Quart 1(4):9–13

    Google Scholar 

  • Wythoff WA (1907) A modification of the game of nim. Nieuw Arch Wisk 7(2):199–202

    MATH  Google Scholar 

  • Zeckendorf E (1972) Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas. Bull Soc Roy Sci Liège 41:179–182

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I thank the participants of the two introductory CGT workshops at Ohio State University and IIT-Bombay, organized by Dr. Érika B. Roldán Roa and Prof. Mallikarjuna Rao and Dr. Ravi Kant, respectively. They have inspired much of this book chapter. Thanks to Gal Cohensius, Melissa Huggan, Richard Nowakowski, Pia Moberg and family, Ofer Zivony, David Wahlstedt, Hans Ekbrand, and Silvia Heubach for comments that helped improve this chapter.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Larsson, U. (2020). CombinArtorial Games. In: Sriraman, B. (eds) Handbook of the Mathematics of the Arts and Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-70658-0_115-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70658-0_115-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70658-0

  • Online ISBN: 978-3-319-70658-0

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics