Skip to main content

Carbon Nanotubes for Solar Cells and Photovoltaics

  • Living reference work entry
  • First Online:
Handbook of Carbon Nanotubes

Abstract

Solar cells have gained considerable attention recently owing to their effective and pollution-free approach for sustainable power production. As a result, research studies have been conducted over the past decades aiming to find solutions to develop novel materials to enhance the performance of these devices, along with reducing the cost of power production by solar cells. The incorporation of carbon nanotubes in solar cells has been reported to be a promising approach, due to their exceptional electrical and physical properties. In this chapter, first, we reviewed the principle of solar cells and the different roles of CNTs in these devices. Then, after a short explanation about each type of photovoltaic cell, the application and performance of CNTs in different parts of these devices are discussed. The roles of CNTs as transparent conducting electrodes, photocarrier generator, and carrier transport materials in different categories of solar cells including perovskite solar cells, organic solar cells, dye-sensitized solar cells, silicon solar cells, are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11(15):1281–1285

    CAS  Google Scholar 

  • Aitola K, Sveinbjörnsson K, Correa-Baena J-P, Kaskela A, Abate A, Tian Y, Johansson EMJ, Grätzel M, Kauppinen EI, Hagfeldt A (2016) Carbon nanotube-based hybrid hole-transporting material and selective contact for high efficiency perovskite solar cells. Energy Environ Sci 9(2):461–466

    CAS  Google Scholar 

  • Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5(4):505–515

    CAS  Google Scholar 

  • Aloui W, Ltaief A, Bouazizi A (2013) Transparent and conductive multi walled carbon nanotubes flexible electrodes for optoelectronic applications. Superlattice Microst 64:581–589

    CAS  Google Scholar 

  • Alturaif HA, Alothman ZA, Shapter JG, Wabaidur SM (2014) Use of carbon nanotubes (CNTs) with polymers in solar cells. Molecules 19(11):17329–17344

    Google Scholar 

  • Angmo D, Krebs FC (2013) Flexible ITO-free polymer solar cells. J Appl Polym Sci 129(1):1–14

    CAS  Google Scholar 

  • Angmo D, Espinosa N, Krebs F (2014) Indium tin oxide-free polymer solar cells: toward commercial reality. In: Low-cost nanomaterials. Springer, pp 189–225. https://doi.org/10.1007/978-1-4471-6473-9

    Chapter  Google Scholar 

  • Arnold MS, Zimmerman JD, Renshaw CK, Xu X, Lunt RR, Austin CM, Forrest SR (2009) Broad spectral response using carbon nanotube/organic semiconductor/C60 photodetectors. Nano Lett 9(9):3354–3358

    CAS  Google Scholar 

  • Ashurov N, Oksengendler BL, Maksimov S, Rashiodva S, Ishteev AR, Saranin DS, Burmistrov IN, Kuznetsov DV, Zakhisov AA (2017) Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review. Mod Electron Mater 3(1):1–25

    Google Scholar 

  • Aspitarte L, McCulley DR, Minot ED (2016) Photocurrent quantum yield in suspended carbon nanotube p–n junctions. Nano Lett 16(9):5589–5593

    CAS  Google Scholar 

  • Avouris P, Chen Z, Perebeinos V (2010) Carbon-based electronics. In: Nanoscience and technology: a collection of reviews from nature journals. World Scientific, pp 174–184

    Google Scholar 

  • Barnes TM, Bergeson JD, Tenent RC, Larsen BA, Teeter G, Jones KM, Blackburn JL, van de Lagemaat J (2010) Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer. Appl Phys Lett 96(24):118

    Google Scholar 

  • Batmunkh M, Biggs MJ, Shapter JG (2015) Carbon nanotubes for dye-sensitized solar cells. Small 11(25):2963–2989

    CAS  Google Scholar 

  • Bernardi M, Lohrman J, Kumar PV, Kirkeminde A, Ferralis N, Grossman JC, Ren S (2012) Nanocarbon-based photovoltaics. ACS Nano 6(10):8896–8903

    CAS  Google Scholar 

  • Berson S, de Bettignies R, Bailly S, Guillerez S, Jousselme B (2007) Elaboration of P3HT/CNT/PCBM composites for organic photovoltaic cells. Adv Funct Mater 17(16):3363–3370

    CAS  Google Scholar 

  • Bindl DJ, Safron NS, Arnold MS (2010) Dissociating excitons photogenerated in semiconducting carbon nanotubes at polymeric photovoltaic heterojunction interfaces. ACS Nano 4(10):5657–5664

    CAS  Google Scholar 

  • Bindl DJ, Brewer AS, Arnold MS (2011) Semiconducting carbon nanotube/fullerene blended heterojunctions for photovoltaic near-infrared photon harvesting. Nano Res 4(11):1174–1179

    CAS  Google Scholar 

  • Blackburn JL, Barnes TM, Beard MC, Kim Y-H, Tenent RC, McDonald TJ, B. To, Coutts TJ, Heben MJ (2008) Transparent conductive single-walled carbon nanotube networks with precisely tunable ratios of semiconducting and metallic nanotubes. ACS Nano 2(6):1266–1274

    CAS  Google Scholar 

  • Brown P, Takechi K, Kamat PV (2008) Single-walled carbon nanotube scaffolds for dye-sensitized solar cells. J Phys Chem C 112(12):4776–4782

    CAS  Google Scholar 

  • Chaudhary S, Lu H, Müller AM, Bardeen CJ, Ozkan M (2007) Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells. Nano Lett 7(7):1973–1979

    CAS  Google Scholar 

  • Chen T, Wang S, Yang Z, Feng Q, Sun X, Li L, Wang ZS, Peng H (2011) Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angew Chem 123(8):1855–1859

    Google Scholar 

  • Chen T, Qiu L, Li H, Peng H (2012a) Polymer photovoltaic wires based on aligned carbon nanotube fibers. J Mater Chem 22(44):23655–23658

    CAS  Google Scholar 

  • Chen W, Seol G, Rinzler AG, Guo J (2012b) Carrier dynamics and design optimization of electrolyte-induced inversion layer carbon nanotube-silicon Schottky junction solar cell. Appl Phys Lett 100(10):103503

    Google Scholar 

  • Chen J, et al. (2020) A polymer/carbon-nanotube ink as a boron-dopant/inorganic-passivation free carrier selective contact for silicon solar cells with over 21% efficiency. Adv Func Mater 30(38):2004476.

    Google Scholar 

  • Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15(9):1317

    CAS  Google Scholar 

  • Choe M, Lee BH, Jo G, Park J, Park W, Lee S, Hong W-K, Seong M-J, Kahng YH, Lee K (2010) Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org Electron 11(11):1864–1869

    CAS  Google Scholar 

  • Choi Y-Y, Kang SJ, Kim H-K, Choi WM, Na S-I (2012) Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol Energy Mater Sol Cells 96:281–285

    CAS  Google Scholar 

  • Cui K, Anisimov AS, Chiba T, Fujii S, Kataura H, Nasibulin AG, Chiashi S, Kauppinen EI, Maruyama S (2014) Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films. J Mater Chem A 2(29):11311–11318

    CAS  Google Scholar 

  • Dabera GDMR, Jayawardena KDGI, Prabhath MRR, Yahya I, Tan YY, Nismy NA, Shiozawa H, Sauer M, Ruiz-Soria G, Ayala P (2013) Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. ACS Nano 7(1):556–565

    CAS  Google Scholar 

  • Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor–acceptor solar cells. Adv Mater 22(37):4097–4111

    CAS  Google Scholar 

  • Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    CAS  Google Scholar 

  • Dissanayake NM, Zhong Z (2011) Unexpected hole transfer leads to high efficiency single-walled carbon nanotube hybrid photovoltaic. Nano Lett 11(1):286–290

    CAS  Google Scholar 

  • Dou L, You J, Yang J, Chen C-C, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6(3):180–185

    CAS  Google Scholar 

  • Fahrenbruch A, Bube R (2012) Fundamentals of solar cell: photovoltaic solar energy conversion. Elsevier, New York

    Google Scholar 

  • Feng L, Li H, Li F, Shi Z, Gu Z (2003) Functionalization of carbon nanotubes with amphiphilic molecules and their Langmuir–Blodgett films. Carbon 41(12):2385–2391

    CAS  Google Scholar 

  • Ferguson AJ, Dowgiallo A-M, Bindl DJ, Mistry KS, Reid OG, Kopidakis N, Arnold MS, Blackburn JL (2015) Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Phys Rev B 91(24):245311

    Google Scholar 

  • Freitag M, Martin Y, Misewich JA, Martel R, Avouris P (2003) Photoconductivity of single carbon nanotubes. Nano Lett 3(8):1067–1071

    CAS  Google Scholar 

  • Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL (2009) Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325(5946):1367–1371

    CAS  Google Scholar 

  • Ganesamoorthy R, Sathiyan G, Sakthivel P (2017) Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications. Sol Energy Mater Sol Cells 161:102–148

    CAS  Google Scholar 

  • Gong M, Shastry TA, Xie Y, Bernardi M, Jasion D, Luck KA, Marks TJ, Grossman JC, Ren S, Hersam MC (2014) Polychiral semiconducting carbon nanotube–fullerene solar cells. Nano Lett 14(9):5308–5314

    CAS  Google Scholar 

  • Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16(35):3533–3539

    CAS  Google Scholar 

  • Guo M, Liu J, Yuan Y, Zhang Z, Yin S, Leng J, Huang N (2020) CNTs/Cf based counter electrode for highly efficient hole-transport-material-free perovskite solar cells. J Photochem Photobiol A Chem 403:112843

    CAS  Google Scholar 

  • Habisreutinger SN, Leijtens T, Eperon GE, Stranks SD, Nicholas RJ, Snaith HJ (2014) Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett 14(10):5561–5568

    CAS  Google Scholar 

  • Ham M-H, Paulus GLC, Lee CY, Song C, Kalantar-Zadeh K, Choi W, Han J-H, Strano MS (2010) Evidence for high-efficiency exciton dissociation at polymer/single-walled carbon nanotube interfaces in planar nano-heterojunction photovoltaics. ACS Nano 4(10):6251–6259

    CAS  Google Scholar 

  • Han S-H, Kim B-J, Park J-S (2014) Effects of the corona pretreatment of PET substrates on the properties of flexible transparent CNT electrodes. Thin Solid Films 572:73–78

    CAS  Google Scholar 

  • Han S-H, Kim B-J, Park J-S (2015) Surface modification of plastic substrates via corona-pretreatment and its effects on the properties of carbon nanotubes for use of flexible transparent electrodes. Surf Coat Technol 271:100–105

    CAS  Google Scholar 

  • Harris JM, Semler MR, May S, Fagan JA, Hobbie EK (2015) Nature of record efficiency fluid-processed nanotube–silicon heterojunctions. J Phys Chem C 119(19):10295–10303

    CAS  Google Scholar 

  • Hatton RA, Miller AJ, Silva SRP (2008) Carbon nanotubes: a multi-functional material for organic optoelectronics. J Mater Chem 18(11):1183–1192

    CAS  Google Scholar 

  • Hau SK, Yip H-L, Zou J, Jen AKY (2009) Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Org Electron 10(7):1401–1407

    CAS  Google Scholar 

  • Hecht DS, Kaner RB (2011) Solution-processed transparent electrodes. MRS Bull 36(10):749–755

    CAS  Google Scholar 

  • Hu X, Hou P, Liu C, Cheng H (2019) Carbon nanotube/silicon heterojunctions for photovoltaic applications. Nano Mater Sci 1(3):156–172

    Google Scholar 

  • Huynh WU, Dittmer JJ, Alivisatos AP (2002) Hybrid nanorod-polymer solar cells. Science 295(5564):2425–2427

    CAS  Google Scholar 

  • Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, McNicholas TP, Gleason KK, Strano MS (2012) Polymer-free near-infrared photovoltaics with single chirality (6, 5) semiconducting carbon nanotube active layers. Adv Mater 24(32):4436–4439

    CAS  Google Scholar 

  • Janssen RAJ, Hummelen JC, Sariciftci NS (2005) Polymer–fullerene bulk heterojunction solar cells. MRS Bull 30(1):33–36

    CAS  Google Scholar 

  • Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    CAS  Google Scholar 

  • Jeon I, Chiba T, Delacou C, Guo Y, Kaskela A, Reynaud O, Kauppinen EI, Maruyama S, Matsuo Y (2015) Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett 15(10):6665–6671

    CAS  Google Scholar 

  • Jeon I, Matsuo Y, Maruyama S (2019) Single-walled carbon nanotubes in solar cells. In: Single-walled carbon nanotubes. Springer, pp 271–298

    Google Scholar 

  • Jia Y, Wei J, Wang K, Cao A, Shu Q, Gui X, Zhu Y, Zhuang D, Zhang G, Ma B (2008) Nanotube–silicon heterojunction solar cells. Adv Mater 20(23):4594–4598

    CAS  Google Scholar 

  • Jia Y, et al (2011) Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11(5):1901–1905.

    Google Scholar 

  • Jun GH, Jin SH, Park SH, Jeon S, Hong SH (2012) Highly dispersed carbon nanotubes in organic media for polymer: fullerene photovoltaic devices. Carbon 50(1):40–46

    CAS  Google Scholar 

  • Jung Y, Li X, Rajan NK, Taylor AD, Reed MA (2013) Record high efficiency single-walled carbon nanotube/silicon p–n junction solar cells. Nano Lett 13(1):95–99

    CAS  Google Scholar 

  • Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98(8):084314

    Google Scholar 

  • Keru G, Ndungu PG, Nyamori VO (2014) A review on carbon nanotube/polymer composites for organic solar cells. Int J Energy Res 38(13):1635–1653

    CAS  Google Scholar 

  • Khan D, Ali Z, Asif D, Panjwani MK, Khan I (2020) Incorporation of carbon nanotubes in photoactive layer of organic solar cells. Journal, Ain Shams Engineering

    Google Scholar 

  • Kim BH, Kim JY, Jeong S-J, Hwang JO, Lee DH, Shin DO, Choi S-Y, Kim SO (2010) Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. ACS Nano 4(9):5464–5470

    CAS  Google Scholar 

  • Kim YH, Sachse C, Zakhidov AA, Meiss J, Zakhidov AA, Müller-Meskamp L, Leo K (2012) Combined alternative electrodes for semi-transparent and ITO-free small molecule organic solar cells. Org Electron 13(11):2422–2428

    CAS  Google Scholar 

  • Kozawa D, Hiraoka K, Miyauchi Y, Mouri S, Matsuda K (2012) Analysis of the photovoltaic properties of single-walled carbon nanotube/silicon heterojunction solar cells. Appl Phys Express 5(4):042304

    Google Scholar 

  • Kulkarni GU, Kiruthika S, Gupta R, Rao KDM (2015) Towards low cost materials and methods for transparent electrodes. Curr Opin Chem Eng 8:60–68

    Google Scholar 

  • Kymakis E, Amaratunga GAJ (2002) Single-wall carbon nanotube/conjugated polymer photovoltaic devices. Appl Phys Lett 80(1):112–114

    CAS  Google Scholar 

  • Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93(3):1764–1768

    CAS  Google Scholar 

  • Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13(5):2086–2091

    CAS  Google Scholar 

  • Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005a) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87(1–4):733–746

    CAS  Google Scholar 

  • Landi BJ, Raffaelle RP, Castro SL, Bailey SG (2005b) Single-wall carbon nanotube–polymer solar cells. Prog Photovolt Res Appl 13(2):165–172

    CAS  Google Scholar 

  • Lee JU (2005) Photovoltaic effect in ideal carbon nanotube diodes. Appl Phys Lett 87(7):073101

    Google Scholar 

  • Lee K, Wu Z, Chen Z, Ren F, Pearton SJ, Rinzler AG (2004) Single wall carbon nanotubes for p-type ohmic contacts to GaN light-emitting diodes. Nano Lett 4(5):911–914

    CAS  Google Scholar 

  • Lee, Ju Min, et al (2011) Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or Bdoped carbon nanotubes. Adv Mater 23(5):629–633.

    Google Scholar 

  • Lee JM, Kwon BH, Park HI, Kim H, Kim MG, Park JS, Kim ES, Yoo S, Jeon DY, Kim SO (2013) Exciton dissociation and charge-transport enhancement in organic solar cells with quantum-dot/N-doped CNT hybrid nanomaterials. Adv Mater 25(14):2011–2017

    CAS  Google Scholar 

  • Levitsky IA (2010) Hybrid solar cells based on carbon nanotubes and Nanoporous silicon [Nanoproducts]. IEEE Nanotechnol Mag 4(4):24–25

    Google Scholar 

  • Li S-S, Chen C-W (2013) Polymer–metal-oxide hybrid solar cells. J Mater Chem A 1(36):10574–10591

    CAS  Google Scholar 

  • Li C, Chen Y, Wang Y, Iqbal Z, Chhowalla M, Mitra S (2007) A fullerene–single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17(23):2406–2411

    CAS  Google Scholar 

  • Li Z, Kunets VP, Saini V, Xu Y, Dervishi E, Salamo GJ, Biris AR, Biris AS (2009) Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions. ACS Nano 3(6):1407–1414

    Google Scholar 

  • Li Z, Saini V, Dervishi E, Kunets VP, Zhang J, Xu Y, Biris AR, Salamo GJ, Biris AS (2010) Polymer functionalized n-type single wall carbon nanotube photovoltaic devices. Appl Phys Lett 96(3):033110

    Google Scholar 

  • Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y (2011a) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group. World Scientific, London, pp 80–84

    Google Scholar 

  • Li J, Liu J, Gao C, Chen G (2011b) Nanocomposite hole-extraction layers for organic solar cells. Int J Photoenergy 2011:1–5

    Google Scholar 

  • Li X, Jung Y, Sakimoto K, Goh T-H, Reed MA, Taylor AD (2013) Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells. Energy Environ Sci 6(3):879–887

    CAS  Google Scholar 

  • Li R, Di J, Yong Z, Sun B, Li Q (2014a) Polymethylmethacrylate coating on aligned carbon nanotube–silicon solar cells for performance improvement. J Mater Chem A 2(12):4140–4143

    CAS  Google Scholar 

  • Li Z, Kulkarni SA, Boix PP, Shi E, Cao A, Fu K, Batabyal SK, Zhang J, Xiong Q, Wong LH (2014b) Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8(7):6797–6804

    CAS  Google Scholar 

  • Liu Y, Wan X, Wang F, Zhou J, Long G, Tian J, You J, Yang Y, Chen Y (2011) Spin-coated small molecules for high performance solar cells. Adv Energy Mater 1(5):771–775

    CAS  Google Scholar 

  • Liu S, Cao K, Li H, Song J, Han J, Shen Y, Wang M (2017) Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol Energy 144:158–165

    CAS  Google Scholar 

  • Lu L, Xu T, Chen W, Lee JM, Luo Z, Jung IH, Park HI, Kim SO, Yu L (2013) The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. Nano Lett 13(6):2365–2369

    CAS  Google Scholar 

  • Ma H, Yip HL, Huang F, Jen AKY (2010) Interface engineering for organic electronics. Adv Funct Mater 20(9):1371–1388

    CAS  Google Scholar 

  • Malapanis A, Perebeinos V, Sinha DP, Comfort E, Lee JU (2013) Quantum efficiency and capture cross section of first and second excitonic transitions of single-walled carbon nanotubes measured through photoconductivity. Nano Lett 13(8):3531–3538

    CAS  Google Scholar 

  • Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N (2014) Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J Photovoltaics 4(6):1433–1435

    Google Scholar 

  • McGehee MD (2014) Perovskite solar cells: continuing to soar. Nat Mater 13(9):845–846

    CAS  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35

    CAS  Google Scholar 

  • Murakami Y, Chiashi S, Miyauchi Y, Hu M, Ogura M, Okubo T, Maruyama S (2004) Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem Phys Lett 385(3–4):298–303

    CAS  Google Scholar 

  • Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ (2009) Electrical connectivity in single-walled carbon nanotube networks. Nano Lett 9(11):3890–3895

    CAS  Google Scholar 

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  • O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. Nature 353(6346):737–740

    Google Scholar 

  • Obaidullah M, Esat V, Sabah C (2018) Single-and multi-walled carbon nanotubes for solar cell applications. Int J Modern Phys B 32(21):1830007

    CAS  Google Scholar 

  • Ong P-L, Euler WB, Levitsky IA (2010) Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions. Nanotechnology 21(10):105203

    Google Scholar 

  • Oudjedi L, Parra-Vasquez ANG, Godin AG, Cognet L, Lounis B (2013) Metrological investigation of the (6, 5) carbon nanotube absorption cross section. J Phys Chem Lett 4(9):1460–1464

    CAS  Google Scholar 

  • Owen J, Son MS, Yoo KH, Ahn BD, Lee SY (2007) Organic photovoltaic devices with Ga-doped Zn O electrode. Appl Phys Lett 90(3):033512

    Google Scholar 

  • Ozser ME, Mohiuddin O (2018) Synthesis, photophysical, structural and electronic properties of novel regioisomerically pure 1, 7-disubstituted perylene-3, 4, 9, 10-tetracarboxylic monoimide dibutylester derivatives. J Mol Struct 1158:145–155

    CAS  Google Scholar 

  • Ozser ME, Sarkodie SA, Mohiuddin O, Ozesme G (2017) Novel derivatives of regioisomerically pure 1, 7-disubstituted perylene diimide dyes bearing phenoxy and pyrrolidinyl substituents: synthesis, photophysical, thermal, and structural properties. J Lumin 192:414–423

    CAS  Google Scholar 

  • Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3(5):297–302

    CAS  Google Scholar 

  • Park S, Vosguerichian M, Bao Z (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5(5):1727–1752

    CAS  Google Scholar 

  • Patyk RL, Lomba BS, Nogueira AF, Furtado CA, Santos AP, Mello RMQ, Micaroni L, Hümmelgen IA (2007) "carbon nanotube–polybithiophene photovoltaic devices with high open-circuit voltage." physica status solidi (RRL)–rapid. Res Lett 1(1):R43–R45

    CAS  Google Scholar 

  • Pfohl M, Glaser K, Ludwig J, Tune DD, Dehm S, Kayser C, Colsmann A, Krupke R, Flavel BS (2016) Performance enhancement of polymer-free carbon nanotube solar cells via transfer matrix modeling. Adv Energy Mater 6(1):1501345

    Google Scholar 

  • Picard L, Lincker F, Kervella Y, Zagorska M, DeBettignies R, Peigney A, Flahaut E, Louarn G, Lefrant S, Demadrille R (2009) Composites of double-walled carbon nanotubes with bis-quaterthiophene-fluorenone conjugated oligomer: Spectroelectrochemical and photovoltaic properties. J Phys Chem C 113(40):17347–17354

    CAS  Google Scholar 

  • Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptor-type photovoltaic devices. Appl Phys Lett 88(9):093106

    Google Scholar 

  • Rahman HA, Kirah K, Ghali H, Anis W (2010) Simulation of carbon nanotube photovoltaic arrays. International Society for Optics and Photonics

    Google Scholar 

  • Rahman HA, Kirah K, Ghali H, Anis W (2014) Simulation of an asymmetric contacted carbon nanotube for solar-energy harvesting. Appl Opt 53(6):1237–1241

    Google Scholar 

  • Raj R, Maroo SC, Wang EN (2013) Wettability of graphene. Nano Lett 13(4):1509–1515

    CAS  Google Scholar 

  • Ramasamy E, Lee WJ, Lee DY, Song JS (2008) Spray coated multi-wall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells. Electrochem Commun 10(7):1087–1089

    CAS  Google Scholar 

  • Ramuz MP, Vosgueritchian M, Wei P, Wang C, Gao Y, Wu Y, Chen Y, Bao Z (2012) Evaluation of solution-processable carbon-based electrodes for all-carbon solar cells. ACS Nano 6(11):10384–10395

    CAS  Google Scholar 

  • Ratier B, Nunzi JM, Aldissi M, Kraft TM, Buncel E (2012) Organic solar cell materials and active layer designs—improvements with carbon nanotubes: a review. Polym Int 61(3):342–354

    CAS  Google Scholar 

  • Ren S, Bernardi M, Lunt RR, Bulovic V, Grossman JC, Gradecak S (2011) Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. Nano Lett 11(12):5316–5321

    CAS  Google Scholar 

  • Rensmo H, Keis K, Lindström H, Södergren S, Solbrand A, Hagfeldt A, Lindquist SE, Wang LN, Muhammed M (1997) High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J Phys Chem B 101(14):2598–2601

    CAS  Google Scholar 

  • Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: Photoinduced charge-transfer interactions. Adv Mater 17(20):2458–2463

    CAS  Google Scholar 

  • Rowell MW, Topinka MA, McGehee MD, Prall H-J, Dennler G, Sariciftci NS, Hu L, Gruner G (2006) Organic solar cells with carbon nanotube network electrodes. Appl Phys Lett 88(23):233506

    Google Scholar 

  • Salvatierra RV, Cava CE, Roman LS, Zarbin AJG (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23(12):1490–1499

    CAS  Google Scholar 

  • Scardaci V, Coull R, Coleman JN (2010) Very thin transparent, conductive carbon nanotube films on flexible substrates. Appl Phys Lett 97(2):023114

    Google Scholar 

  • Shastry TA, Clark SC, Rowberg AJE, Luck KA, Chen KS, Marks TJ, Hersam MC (2016a) Carbon nanotubes: enhanced uniformity and area scaling in carbon nanotube–fullerene bulk-heterojunction solar cells enabled by solvent additives (Adv. Energy mater. 2/2016). Adv Energy Mater 6(2):1501466

    Google Scholar 

  • Shastry TA, Hartnett PE, Wasielewski MR, Marks TJ, Hersam MC (2016b) Ternary polymer–Perylenediimide–carbon nanotube photovoltaics with high efficiency and stability under super-solar irradiation. ACS Energy Lett 1(3):548–555

    CAS  Google Scholar 

  • Shi E, Zhang L, Li Z, Li P, Shang Y, Jia Y, Wei J, Wang K, Zhu H, Wu D (2012) TiO 2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Sci Rep 2:884

    Google Scholar 

  • Shin YJ, Wang Y, Huang H, Kalon G, Wee ATS, Shen Z, Bhatia CS, Yang H (2010) Surface-energy engineering of graphene. Langmuir 26(6):3798–3802

    CAS  Google Scholar 

  • Shockley W (1961) The Shockley-Queisser limit. J Appl Phys 32:510–519

    CAS  Google Scholar 

  • Singh C, Shaffer MSP, Windle AH (2003) Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41(2):359–368

    CAS  Google Scholar 

  • Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630

    CAS  Google Scholar 

  • Solar Power Europe (2018) Global market outlook for solar power 2018–2022. Solar Power Europe, Brussels

    Google Scholar 

  • Somani SP, Somani PR, Umeno M (2008) Carbon nanotube incorporation: a new route to improve the performance of organic–inorganic heterojunction solar cells. Diam Relat Mater 17(4–5):585–588

    CAS  Google Scholar 

  • Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H, Kong J (2015) Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells. Nano Lett 15(3):2104–2110

    CAS  Google Scholar 

  • Steim R, Kogler FR, Brabec CJ (2010) Interface materials for organic solar cells. J Mater Chem 20(13):2499–2512

    CAS  Google Scholar 

  • Stewart DA, Léonard F (2005) Energy conversion efficiency in nanotube optoelectronics. Nano Lett 5(2):219–222

    CAS  Google Scholar 

  • Suzuki K, Yamaguchi M, Kumagai M, Yanagida S (2003) Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells. Chem Lett 32(1):28–29

    CAS  Google Scholar 

  • Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL (2009) Ultrasmooth, large-area, high-uniformity, conductive transparent single-walled-carbon-nanotube films for photovoltaics produced by ultrasonic spraying. Adv Mater 21(31):3210–3216

    CAS  Google Scholar 

  • Thorp D, Campbell P, Wenham SR (1996) Conformal films for light-trapping in thin silicon solar cells. Prog Photovolt Res Appl 4(3):205–224

    CAS  Google Scholar 

  • Topinka MA, Rowell MW, Goldhaber-Gordon D, McGehee MD, Hecht DS, Gruner G (2009) Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Lett 9(5):1866–1871

    CAS  Google Scholar 

  • Tune DD, Flavel BS, Krupke R, Shapter JG (2012) Carbon nanotube-silicon solar cells. Adv Energy Mater 2(9):1043–1055

    CAS  Google Scholar 

  • Tung RT (2001) Recent advances in Schottky barrier concepts. Mater Sci Eng R Rep 35(1–3):1–138

    Google Scholar 

  • Tung VC, Huang J-H, Tevis I, Kim F, Kim J, Chu C-W, Stupp SI, Huang J (2011) Surfactant-free water-processable photoconductive all-carbon composite. J Am Chem Soc 133(13):4940–4947

    CAS  Google Scholar 

  • Tung VC, Huang J-H, Kim J, Smith AJ, Chu C-W, Huang J (2012) Towards solution processed all-carbon solar cells: a perspective. Energy Environ Sci 5(7):7810–7818

    CAS  Google Scholar 

  • Tvingstedt K, Inganas O (2007) Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Adv Mater (Weinheim, Ger) 19:2893

    CAS  Google Scholar 

  • Ulbricht R, Jiang X, Lee S, Inoue K, Zhang M, Fang S, Baughman R, Zakhidov A (2006) Polymeric solar cells with oriented and strong transparent carbon nanotube anode. Phys Status Solidi B 243(13):3528–3532

    CAS  Google Scholar 

  • Ulbricht R, Lee SB, Jiang X, Inoue K, Zhang M, Fang S, Baughman RH, Zakhidov AA (2007) Transparent carbon nanotube sheets as 3-D charge collectors in organic solar cells. Sol Energy Mater Sol Cells 91(5):416–419

    CAS  Google Scholar 

  • Van De Lagemaat J, Barnes TM, Rumbles G, Shaheen SE, Coutts TJ, Weeks C, Levitsky I, Peltola J, Glatkowski P (2006) Organic solar cells with carbon nanotubes replacing in 2 O 3: Sn as the transparent electrode. Appl Phys Lett 88(23):233503

    Google Scholar 

  • Wadhwa P, Liu B, McCarthy MA, Wu Z, Rinzler AG (2010) Electronic junction control in a nanotube-semiconductor Schottky junction solar cell. Nano Lett 10(12):5001–5005

    CAS  Google Scholar 

  • Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG (2011) Electrolyte-induced inversion layer Schottky junction solar cells. Nano Lett 11(6):2419–2423

    CAS  Google Scholar 

  • Wang F, Matsuda K (2019) Applications of carbon nanotubes in solar cells. In: Nanocarbons for energy conversion: supramolecular approaches. Springer, Cham, pp 497–536

    Google Scholar 

  • Wang S, Zhang Y, Abidi N, Cabrales L (2009) Wettability and surface free energy of graphene films. Langmuir 25(18):11078–11081

    CAS  Google Scholar 

  • Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2014) Fabrication of single-walled carbon nanotube/Si heterojunction solar cells with high photovoltaic performance. ACS Photonics 1(4):360–364

    CAS  Google Scholar 

  • Wang F, Kozawa D, Miyauchi Y, Hiraoka K, Mouri S, Ohno Y, Matsuda K (2015a) Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers. Nat Commun 6(1):1–7

    Google Scholar 

  • Wang X, Li Z, Xu W, Kulkarni SA, Batabyal SK, Zhang S, Cao A, Wong LH (2015b) TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11:728–735

    CAS  Google Scholar 

  • Wang F, Endo M, Mouri S, Miyauchi Y, Ohno Y, Wakamiya A, Murata Y, Matsuda K (2016) Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale 8(23):11882–11888

    CAS  Google Scholar 

  • Wei J, Jia Y, Shu Q, Gu Z, Wang K, Zhuang D, Zhang G, Wang Z, Luo J, Cao A (2007) Double-walled carbon nanotube solar cells. Nano Lett 7(8):2317–2321

    CAS  Google Scholar 

  • Williams CD, Robles RO, Zhang M, Li S, Baughman RH, Zakhidov AA (2008) Multiwalled carbon nanotube sheets as transparent electrodes in high brightness organic light-emitting diodes. Appl Phys Lett 93(18):183506

    Google Scholar 

  • Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276

    CAS  Google Scholar 

  • Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13):3435–3446

    CAS  Google Scholar 

  • Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H, Cao A (2015) Comparison of Nanocarbon–silicon solar cells with nanotube–Si or graphene–Si contact. ACS Appl Mater Interfaces 7(31):17088–17094

    CAS  Google Scholar 

  • Yan J, Uddin MJ, Dickens TJ, Okoli OI (2013) Carbon nanotubes (CNTs) enrich the solar cells. Sol Energy 96:239–252

    CAS  Google Scholar 

  • Zhang M, Fang S, Zakhidov AA, Lee SB, Aliev AE, Williams CD, Atkinson KR, Baughman RH (2005) Strong, transparent, multifunctional, carbon nanotube sheets. Science 309(5738):1215–1219

    CAS  Google Scholar 

  • Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C (2006) Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett 6(9):1880–1886

    CAS  Google Scholar 

  • Zhang Q, Chou TP, Russo B, Jenekhe SA, Cao G (2008) Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem 120(13):2436–2440

    Google Scholar 

  • Zhou Y, Hu L, Grüner G (2006) A method of printing carbon nanotube thin films. Appl Phys Lett 88(12):123109

    Google Scholar 

  • Zhou Z, Li B, Shen C, Wu D, Fan H, Zhao J, Li H, Zeng Z, Luo Z, Ma L (2020) Metallic 1T phase enabling MoS2 Nanodots as an efficient agent for photoacoustic imaging guided Photothermal therapy in the near-infrared-II window. Small 16(43):2004173

    CAS  Google Scholar 

  • Zhu H, Zeng H, Subramanian V, Masarapu C, Hung K-H, Wei B (2008) Anthocyanin-sensitized solar cells using carbon nanotube films as counter electrodes. Nanotechnology 19(46):465204

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ziad Saghir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abohamzeh, E., Sheikholeslami, M., Al Hajaj, Z., Saghir, M.Z. (2021). Carbon Nanotubes for Solar Cells and Photovoltaics. In: Abraham, J., Thomas, S., Kalarikkal, N. (eds) Handbook of Carbon Nanotubes. Springer, Cham. https://doi.org/10.1007/978-3-319-70614-6_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70614-6_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70614-6

  • Online ISBN: 978-3-319-70614-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics