Skip to main content

Integrated Soil Fertility Management in Sub-Saharan Africa: Evolving Paradigms Toward Integration

Part of the Encyclopedia of the UN Sustainable Development Goals book series (ENUNSDG)

Definition

Integrated soil fertility management is defined as a set of soil fertility management practices that necessarily include the use of fertilizer, organic inputs, and improved germplasm combined with the knowledge on how to adapt these practices to local conditions, aiming at maximizing agronomic use efficiency of the applied nutrients and improving crop productivity (Vanlauwe et al. 2010; Sanginga and Woomer 2009). Notably, before the inception of ISFM, there were shortfalls associated with sole mineral fertilizers use such as environmental and health concerns, high cost, and unavailability.

Introduction

The world is experiencing a population rise that calls for food production intensification. Sub-Saharan Africa (SSA) alone could have a projected 2.7 billion people by the year 2060 (Canning et al. 2015). By the year 2013, the region had 23% of its population being food insecure, while 40% of the children demonstrated stunted growth (UNICEF 2013). Currently, approximately 815...

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abiven S, Menasseri S, Chenu C (2009) The effects of organic inputs over time on soil aggregate stability – a literature analysis. Soil Biol Biochem 41:1–12

    CAS  CrossRef  Google Scholar 

  • ACB (2016) N2Africa, the gates foundation and legume commercialisation in Africa. Retrieved from http://acbio.org.za/wp-content/uploads/2016/08/N2-Africa-report.pdf

  • Adamtey N, Musyoka MW, Zundel C et al (2016) Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric Ecosyst Environ 235:61–79

    CrossRef  Google Scholar 

  • Agegnehu G, Vanbeek C, Bird MI (2014) Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J Soil Sci Plant Nutr 14:532–545

    CAS  Google Scholar 

  • AGRA (2009) AGRA in 2009 engaging globally, working locally. AGRA, Nairobi

    Google Scholar 

  • AGRA (2016) AGRA annual progress report. https://agra.org/2016AnnualReport

  • Aguilera E, Lassaletta L, Gattinger A et al (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ 168:25–36

    CrossRef  Google Scholar 

  • Annan KA (2008) Forging a Uniquely African Green Revolution. Address by Mr. Kofi A. Annan. In: Chairman of African Green Revolution Association (AGRA). Salzburg Global Seminars, Austria

    Google Scholar 

  • Ajayi OC, Akinnifesi FK, Sileshi G et al (2009) Labour inputs and financial profitability of conventional and agroforestry-based soil fertility management practices in Zambia. Agrekon 48:276–292

    CrossRef  Google Scholar 

  • Amossé C, Jeuffroy MH, Celette F et al (2013) Relay-intercropped forage legumes help to control weeds in organic grain production. Eur J Agron 49:158–167

    CrossRef  Google Scholar 

  • ASHC (2012) Soil health news.. https://africasoilhealth.cabi.org/2012/12/02/december-2012-ashc-newsletter-published

    Google Scholar 

  • Bajwa AA (2014) Sustainable weed management in conservation agriculture. Crop Prot 65:105–113

    CrossRef  Google Scholar 

  • Bationo A, Waswa B (2011) New challenges and opportunities for integrated soil fertility Management in Africa. In: Bationo A, Waswa B, Okeyo J, Maina F, Kihara J (eds) Innovations as key to the green revolution in Africa. Springer, Dordrecht

    CrossRef  Google Scholar 

  • Bedoussac L, Journet EP, Hauggaard-Nielsen H et al (2015) Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agron Sustain Dev 35:911–935

    CrossRef  Google Scholar 

  • Branca G, Mccarthy N, Lipper L, Jolejole MC (2011) Climate smart agriculture: a synthesis of empirical evidence of food security and mitigation benefits from improved cropland management. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Büchi L, Wendling M, Amossé C et al (2018) Importance of cover crops in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system. Agric Ecosyst Environ 256:92–104

    CrossRef  Google Scholar 

  • Bunde MA (2017) Integrated soil fertility management in vegetable production systems: a potential for improved food security in Kenya. In: Proceedings of Kibabii University 2nd interdisciplinary international scientific conference, pp 2–7

    Google Scholar 

  • Camarotto C, Dal-Ferro N, Piccoli I et al (2018) Conservation agriculture and cover crop practices to regulate water, carbon and nitrogen cycles in the low-lying venetian plain. Catena 167:236–249

    CAS  CrossRef  Google Scholar 

  • Campbell BM, Thornton P, Zougmoré R et al (2014) Sustainable intensification: what is its role in climate smart agriculture? Curr Opin Environ Sustain 8:39–43

    CrossRef  Google Scholar 

  • Canning D, Raja S, Yazbeck AS (2015) Africa’s demographic transition: dividend or disaster? The World Bank, Washington, DC

    CrossRef  Google Scholar 

  • Chianu JN, Ohiokpehai O, Vanlauwe B et al (2009) Promoting a versatile but yet minor crop: Soybean in the farming systems of Kenya. J Sustain Dev Africa 10:324–344

    Google Scholar 

  • Chirwa EW (2005) Adoption of fertiliser and hybrid seeds by smallholder maize farmers in southern Malawi. Dev South Afr 22:1–12

    CrossRef  Google Scholar 

  • Chivenge P, Vanlauwe B, Gentile R et al (2011) Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biol Biochem 43:657–666

    CAS  CrossRef  Google Scholar 

  • Coulibaly JY, Chiputwa B, Nakelse T et al (2017) Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric Syst 155:52–69

    CrossRef  Google Scholar 

  • Daudu AK, Oladipo FO, Kayode AO (2018) Gender capacity building needs on soil fertility management practices among smallholder arable crop farmers in Kwara state, Nigeria. J Saudi Soc Agric Sci. (in press)

    Google Scholar 

  • Duchene O, Vian JF, Celette F (2017) Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms. A review. Agric Ecosyst Environ 240:148–161

    CrossRef  Google Scholar 

  • Endris S, Dawid J (2015) Yield response of maize to integrated soil fertility management on acidic nitosol of southwestern Ethiopia. J Agron 14:152–157

    CAS  CrossRef  Google Scholar 

  • Erkossa T, Williams TO, Laekemariam F (2018) Integrated soil, water and agronomic management effects on crop productivity and selected soil properties in Western Ethiopia. Int Soil Water Conserv Res 1–12. https://doi.org/10.1016/j.iswcr.2018.06.001. (in press)

    CrossRef  Google Scholar 

  • Fairhurst T (2012) Handbook for integrated soil fertility management. Africa Soil Health Consortium and CABI, Nairobi

    Google Scholar 

  • FAO (2015) The State of food insecurity in the world. Retrieved from www.fao.org/3/a-i4646e.pdf

    Google Scholar 

  • FAO (2017) The state of food security and nutrition in the world. Retrieved from www.fao.org/state-of-food-security-nutrition/en/

  • FAOSTAT (2015) FAO statistical pocketbook. Retrieved from www.fao.org/faostat/en/%0A%0A

    Google Scholar 

  • Franke AC, Van Den Brand GJ et al (2017) Sustainable intensification through rotations with grain legumes in sub- Saharan Africa: a review. Agric Ecosyst Environ. (in press)

    Google Scholar 

  • Franke AC, Brand GJ, Van D et al (2018) Sustainable intensification through rotations with grain legumes in sub-Saharan Africa: a review. Agric Ecosyst Environ 261:172–185

    CAS  CrossRef  Google Scholar 

  • Gebremeskel G, Gebremicael TG, Girmay A (2018) Economic and environmental rehabilitation through soil and water conservation, the case of Tigray in northern Ethiopia. J Arid Environ 151:113–124

    CrossRef  Google Scholar 

  • Gilbert N (2012) African agriculture: dirt poor. http://www.nature.com/news/african-agriculture-dirt-poor-1.10311. Global Soil Partnership. 2013. Launch of the Global Soil Partnership in Eastern and Southern Africa. http://www.fao.org/fileadmin/user_upload/GSP/docs/Berlin/Launch_Report.pdf

    CAS  CrossRef  Google Scholar 

  • Guo L, Wu G, Li Y et al (2016) Effects of cattle manure compost combined with chemical fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in eastern China. Soil Tillage Res 156:140–147

    CrossRef  Google Scholar 

  • Hai-cheng XU, Xing-long DAI, Jin-peng CHU (2018) Integrated management strategy for improving the grain yield and nitrogen-use efficiency of winter wheat. J Integr Agric 17:315–327

    CrossRef  Google Scholar 

  • Kamanga BCG, Waddington SR, Whitbread AM et al (2014) Improving the efficiency of use of small amounts of nitrogen and phosphorus fertiliser on smallholder maize in central Malawi. Exp Agric 50:229–249

    CrossRef  Google Scholar 

  • Kato E, Place FM (2011) Heterogeneous treatment effects of integrated soil fertility management on crop productivity evidence from Nigeria. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Kermah M, Franke AC, Adjei-nsiah S (2017) Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crop Res 213:38–50

    CrossRef  Google Scholar 

  • Kiboi MN, Ngetich KF, Diels J et al (2017) Minimum tillage, tied ridging and mulching for better maize yield and yield stability in the central highlands of Kenya. Soil Tillage Res 170:157–166

    CrossRef  Google Scholar 

  • Kimiti JM, Odee DW (2010) Integrated soil fertility management enhances population and effectiveness of indigenous cowpea rhizobia in semi-arid eastern Kenya. Appl Soil Ecol 4:304–309

    CrossRef  Google Scholar 

  • Kunyanga CN, Imungi JK, Vellingiri V (2013) Nutritional evaluation of indigenous foods with potential food-based solution to alleviate hunger and malnutrition in Kenya. J Appl Biosci 67:5277–5288

    CrossRef  Google Scholar 

  • Lagerkvist CJ, Shikuku K, And OJ (2015) A conceptual approach for measuring farmers’ attitudes to integrated soil fertility management in Kenya. NJAS Wagen J Life Sci 74–75:17–26

    CrossRef  Google Scholar 

  • Lambrecht I, Vanlauwe B (2015) Integrated soil fertility management: from concept to practice in eastern DR Congo. Bioeconomics working paper 180062, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics

    Google Scholar 

  • Latati M, Bargaz A, Belarbi B et al (2016) The intercropping common bean with maize improves the rhizobial efficiency, resource use and grain yield under low phosphorus availability. Eur J Agron 72:80–90

    CAS  CrossRef  Google Scholar 

  • Liu Z, Gao J, Gao F et al (2018) Integrated agronomic practices management improve yield and nitrogen balance in double cropping of winter wheat-summer maize. Field Crop Res 221:196–206

    CrossRef  Google Scholar 

  • Manzeke GM, Mtambanengwe F, Nezomba H et al (2014) Zinc fertilization influence on maize productivity and grain nutritional quality under integrated soil fertility management in Zimbabwe. Field Crop Res 166:128–136

    CrossRef  Google Scholar 

  • Morello TF, Piketty MG, Gardner T et al (2018) Fertilizer adoption by smallholders in the Brazilian Amazon: farm-level evidence. Ecol Econ 144:278–291

    CrossRef  Google Scholar 

  • Mponela P, Tamene L, Ndengu G et al (2016) Determinants of integrated soil fertility management technologies adoption by smallholder farmers in the Chinyanja triangle of southern Africa. Land Use Policy 59:38–48

    CrossRef  Google Scholar 

  • Mucheru-Muna M, Mugendi D, Kung’u J et al (2007) Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agrofor Syst 69:189–197

    CrossRef  Google Scholar 

  • Mucheru-Muna M, Pypers P, Mugendi D et al (2010) A staggered maize – legume intercrop arrangement robustly increases crop yields and economic returns in the highlands of Central Kenya. Field Crop Res 115:132–139

    CrossRef  Google Scholar 

  • Mugendi DN, Nair PKR (1997) Predicting decomposition patterns of tree biomass in tropical highland microregions of Kenya. Agrofor Syst 35:187–201

    CrossRef  Google Scholar 

  • Negassa W, Sileshi GW (2018) Integrated soil fertility management reduces termite damage to crops on degraded soils in western Ethiopia. Agric Ecosyst Environ 251:124–131

    CrossRef  Google Scholar 

  • Nezomba H, Mtambanengwe F, al RJ (2018) Integrated soil fertility management sequences for reducing climate risk in smallholder crop production systems in southern Africa. Field Crop Res 224:102–114

    CrossRef  Google Scholar 

  • Ojiem JO, Franke AC, Vanlauwe B et al (2014) Benefits of legume – maize rotations: assessing the impact of diversity on the productivity of smallholders in Western Kenya. Field Crop Res 168:75–85

    CrossRef  Google Scholar 

  • Okeyo AI, Mucheru-muna M, Mugwe J, Ngetich KF (2014) Effects of selected soil and water conservation technologies on nutrient losses and maize yields in the central highlands of Kenya. Agric Water Manag 137:52–58

    CrossRef  Google Scholar 

  • Palm CA, Gachengo CN, Delve RJ et al (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83:27–42

    CrossRef  Google Scholar 

  • Pretty J, Toulmin,C, Williams S et al (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9:5–24

    CrossRef  Google Scholar 

  • Pypers P, Sanginga J, Kasereka B et al (2011) Increased productivity through integrated soil fertility management in cassava – legume intercropping systems in the highlands of Sud-Kivu, DR Congo. Field Crop Res 120:76–85

    CrossRef  Google Scholar 

  • Sanchez PA, Shepherd KD, Soule MJ et al (1997) Soil fertility replenishment in Africa: an investment in natural resource capital. In: Buresh JR (ed) Replenishing soil fertility in Africa. SSSA, Madison, pp 1–46. SSSA Special Publication No, p 51

    Google Scholar 

  • Sanchez PA, Jama BA (2002) In: Vanlauwe B, Diels J, Sanginga N, Merckx R (eds) Soil fertility replenishment takes off in East and Southern Africa. CAB International, Wallingford, pp 23–45Integrated plant nutrient management in sub-Saharan Africa

    Google Scholar 

  • Sanginga N, Woomer PL (2009) Integrated soil fertility management in Africa: principles, practices and developmental process. Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Nairobi

    Google Scholar 

  • SciDev.Net (2015) Beans could help fill Africa’s fertiliser gap. http://www.scidev.net/global/food-security/news/beans-Africa-fertiliser-farming.html

  • Serafim B, Oginga B, Mugwe JN (2013) Effects of manure, lime and mineral P fertilizer on soybean yields and soil fertility in a humic nitisol in the central highlands of Kenya. Int J Agric Sci Res 2:283–291

    Google Scholar 

  • Smith A, Snapp S, Dimes J et al (2016) Doubled-up legume rotations improve soil fertility and maintain productivity under variable conditions in maize-based cropping systems in Malawi. Agric Syst 145:139–149

    CrossRef  Google Scholar 

  • Sommer R, Paul BK, Mukalama J et al (2018) Reducing losses but failing to sequester carbon in soils – the case of conservation agriculture and integrated soil fertility management in the humid tropical agro-ecosystem of Western Kenya. Agric Ecosyst Environ 254:82–91

    CAS  CrossRef  Google Scholar 

  • Srinivasarao C, Deshpande AN, Venkateswarlu B et al (2012) Grain yield and carbon sequestration potential of post monsoon sorghum cultivation in Vertisols in the semi-arid tropics of Central India. Geoderma 175–176:90–97

    CrossRef  Google Scholar 

  • The Montpellier Panel (2013) Sustainable intensification: a new paradigm for African agriculture. Agriculture for Impact, London

    Google Scholar 

  • UNICEF (2013) Improving child nutrition: the achievable imperative for global progress. United Nations Children’s Fund, New York

    Google Scholar 

  • Usman M, Madu VU, Alkali G (2015) The combined use of organic and inorganic fertilizers for improving maize crop productivity in Nigeria. Int J Sci Res Pub 5:1–7

    Google Scholar 

  • Vanlauwe B, Bationo A, Chianu J et al (2010) Integrated soil fertility management. Outlook Agric 39:17–24

    CrossRef  Google Scholar 

  • Vanlauwe B, Descheemaeke K, Giller KE et al (2015) Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1:1239–1286

    CrossRef  Google Scholar 

  • Ward PS, Bell AR, Droppelmann K et al (2018) Early adoption of conservation agriculture practices: understanding partial compliance in programs with multiple adoption decisions. Land Use Policy 70:27–37

    CrossRef  Google Scholar 

  • Wolka K, Mulder J, Biazin B (2018) Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: a review. Agric Water Manag 207:67–79

    CrossRef  Google Scholar 

  • World Bank (2015) Ending poverty and hunger by 2030. Retrieved from documents.worldbank.org/www/95768-revised-wk-Ending-Poverty-and-hungerby-2030

    Google Scholar 

  • Zhang Y, Li C, Wang Y et al (2016) Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China plain. Soil Tillage Res 155:85–94

    CrossRef  Google Scholar 

  • Zhang X, Zhu A, Xin X et al (2018) Tillage and residue management for long-term wheat-maize cropping in the North China plain: I. Crop yield and integrated soil fertility index. Field Crop Res 221:157–165

    CrossRef  Google Scholar 

  • Zingore S, Mutegi J, Agesa B et al (2015) Soil degradation in sub-Saharan Africa and crop production options for soil rehabilitation. Better Crops Plant Food 99:65–67

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayne Mugwe .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Verify currency and authenticity via CrossMark

Cite this entry

Mugwe, J., Ngetich, F., Otieno, E.O. (2019). Integrated Soil Fertility Management in Sub-Saharan Africa: Evolving Paradigms Toward Integration. In: Leal Filho, W., Azul, A., Brandli, L., Özuyar, P., Wall, T. (eds) Zero Hunger. Encyclopedia of the UN Sustainable Development Goals. Springer, Cham. https://doi.org/10.1007/978-3-319-69626-3_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69626-3_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69626-3

  • Online ISBN: 978-3-319-69626-3

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science