Optics for Spatially Tailored Ultrashort Pulse Laser Beam Micro-/Nanoprocessing

Living reference work entry


Spatial beam shaping is very important to perform material laser processing with higher quality and higher throughput. The spatial beam shaping can be performed by passive and active optical components. The passive optical components including refractive optical elements such as ordinary lens, microlens array, cylindrical lens, axicon lens, diffractive optical elements, and apertures are described for specially designed shapes. The active optical components as typified by a liquid crystal spatial light modulator (LCSLM) is very useful to perform an arbitrary and variable spatial beam shaping, especially the beam shaping by a computer-generated hologram (CGH) displayed on an LCSLM is powerful and has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in glass and polymer, and surface nanostructuring. In this chapter, the principle, features, useful techniques of the passive, and active beam-shaping optical components will be described, and some experimental results for the holographic laser processing implemented with the LCSLM will be demonstrated.


Ultrashort pulse laser Computer-generated holography Spatial light modulator Parallel laser processing Spatial beam shaping 


  1. Abe T, Hasegawa S, Takahashi H, Ota M, Hayasaki Y (2017) In-process debris removal in femtosecond laser processing. Appl Phys A Mater Sci Process 123:700ADSGoogle Scholar
  2. Allegre OJ, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson SP, Dearden G (2013) Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21:21198–21207ADSGoogle Scholar
  3. Amako J, Nagasaka K, Kazuhiro N (2002) Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. Opt Lett 27:969–971ADSGoogle Scholar
  4. Amako J, Sawaki D, Fujii E (2003) Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics. J Opt Soc Am B 20:2562–2568ADSGoogle Scholar
  5. Ams M, Marshall GD, Spence DJ, Withford MJ (2005) Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13:5676–5681ADSGoogle Scholar
  6. Antkowiak M, Torres-Mapa ML, Gunn-Moore F, Dholakia K (2010) Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. J Biophotonics 3:696–705Google Scholar
  7. Bengtsson J (1994) Kinoform design with an optimal-rotation-angle method. Appl Opt 33:6879–6884ADSGoogle Scholar
  8. Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Furfaro L, Withford MJ, Dudley JM (2010a) High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams. Opt Express 18:566–574ADSGoogle Scholar
  9. Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Salut R, Furfaro L, Dudley JM (2010b) High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett 97:81–102Google Scholar
  10. Bloomstein TM, Marchant MF, Deneault S, Hardy DE, Rothschild M (2006) 22-nm immersion interference lithography. Opt Express 14:6434–6443ADSGoogle Scholar
  11. Cai W, Reber TJ, Piestun R (2006) Computer-generated volume holograms fabricated by femtosecond laser micromachining. Opt Lett 31:1836–1838ADSGoogle Scholar
  12. Cerullo G, Osellame R, Taccheo S, Marangoni M, Polli D, Ramponi R, Laporta P, Silvestri SD (2002) Femtosecond micromachining of symmetric waveguides at 1.5 mm by astigmatic beam focusing. Opt Lett 27:1938–1940ADSGoogle Scholar
  13. Chaen K, Takahashi H, Hasegawa S, Hayasaki Y (2007) Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt Commun 280:165–172ADSGoogle Scholar
  14. Cheng Y, Sugioka K, Midorikawa K, Masuda M, Toyoda K, Kawachi M, Shihoyama K (2003) Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt Lett 28:55–57ADSGoogle Scholar
  15. Courvoisier F, Lacourt PA, Jacquot M, Bhuyan MK, Furfaro L, Dudley JM (2009) Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett 34:3163–3165ADSGoogle Scholar
  16. Cumming AP, Jesacher A, Booth MJ, Wilson T, Gu M (2011) Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express 19:9419–9425ADSGoogle Scholar
  17. Daria VR, Stricker C, Bowman R, Redman S, Bachor HA (2009) Arbitrary multisite two-photon excitation in four dimensions. Appl Phys Lett 95:093701ADSGoogle Scholar
  18. Gecevičius M, Beresna M, Kazansky PG (2013) Polarization sensitive camera by femtosecond laser nanostructuring. Opt Lett 38:4096–4099ADSGoogle Scholar
  19. Gittard SD, Nguyen A, Obata K, Koroleva A, Narayan RJ, Chichkov BN (2011) Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed Opt Express 2:3167–3178Google Scholar
  20. Hasegawa S, Hayasaki Y (2007) Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator. Opt Rev 14:208–213Google Scholar
  21. Hasegawa S, Hayasaki Y (2009a) Adaptive optimization of hologram in holographic femtosecond laser processing system. Opt Lett 34:22–24ADSGoogle Scholar
  22. Hasegawa S, Hayasaki Y (2009b) Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses. Jpn J Appl Phys 48:09LE03Google Scholar
  23. Hasegawa S, Hayasaki Y (2011) Second harmonic optimization of computer-generated hologram. Opt Lett 36:2943–2945ADSGoogle Scholar
  24. Hasegawa S, Hayasaki Y (2013) Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt Express 21:12987–12995ADSGoogle Scholar
  25. Hasegawa S, Hayasaki Y (2014a) Holographic vector wave femtosecond laser processing. Int J Optomechatron 8:73–88Google Scholar
  26. Hasegawa S, Hayasaki Y (2014b) Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing. Opt Lett 39:478–481ADSGoogle Scholar
  27. Hasegawa S, Hayasaki Y, Nishida N (2006) Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt Lett 31:1705–1707ADSGoogle Scholar
  28. Hasegawa S, Shiono K, Hayasaki Y (2015) Femtosecond laser processing with a holographic line-shaped beam. Opt Express 23:23185–23194ADSGoogle Scholar
  29. Hasegawa S, Ito H, Toyoda H, Hayasaki Y (2016) Massively parallel femtosecond laser processing. Opt Express 24:18513–18524ADSGoogle Scholar
  30. Hasegawa S, Ito H, Toyoda H, Hayasaki Y (2018) Diffraction-limited ring beam generated by radial grating. OSA Continuum 1:283–294Google Scholar
  31. Hayasaki Y, Yamamoto H, Nishida N (1998) Optical dependence of spatial frequency of formed patterns on focusing deviation in nonlinear optical ring resonator. Opt Commun 151:263–267ADSGoogle Scholar
  32. Hayasaki Y, Yamamoto H, Nishida N (2000) Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback. J Opt Soc Am B 17:1211–1215ADSGoogle Scholar
  33. Hayasaki Y, Sugimoto T, Takita A, Nishida N (2005) Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl Phys Lett 87:031101ADSGoogle Scholar
  34. Hayasaki Y, Nishitani M, Takahashi H, Yamamoto H, Takita A, Suzuki D, Hasegawa S (2012) Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl Phys A Mater Sci Process 107:357–362ADSGoogle Scholar
  35. Imamoto H, Kanehira S, Wang X, Kametani K, Sakakura M, Shimotsuma Y, Miura K, Hirao K (2011) Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser. Opt Lett 36:1176–1178ADSGoogle Scholar
  36. Jesacher A, Booth MJ (2010) Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 18:21090–21099ADSGoogle Scholar
  37. Jin Y, Allegre OJ, Perrie W, Abrams K, Ouyang J, Fearon E, Edwardson SP, Dearden G (2013) Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21:25333–25343ADSGoogle Scholar
  38. Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S (2005) Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86:044–102Google Scholar
  39. Kawamura K, Ogawa T, Sarukura N, Hirano M, Hosono H (2000) Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Appl Phys B Lasers Opt 71:119–121ADSGoogle Scholar
  40. Kelemen L, Valkai S, Ormos P (2007) Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt Express 15:14488–14497ADSGoogle Scholar
  41. Klein-Wiele JH, Simon P (2003) Fabrication of periodic nanostructures by phase-controlled multiple-beam interference. Appl Phys Lett 83:4707–4709ADSGoogle Scholar
  42. Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Appl Phys Lett 79:725–727ADSGoogle Scholar
  43. Kuang Z, Perrie W, Leach J, Sharp M, Edwardson S, Padgett M, Dearden G, Watkins K (2008) High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl Surf Sci 255:2284–2289ADSGoogle Scholar
  44. Kuang Z, Liu D, Perrie W, Edwardson S, Sharp M, Fearon E, Dearden G, Watkins K (2009) Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl Surf Sci 255:6582–6588ADSGoogle Scholar
  45. Kumagai K, Suzuki D, Hasegawa S, Hayasaki Y (2015) Volumetric display with holographic parallel optical access and multilayer fluorescent screen. Opt Lett 40:3356–3359ADSGoogle Scholar
  46. Kumagai K, Hasegawa S, Hayasaki Y (2017) Volumetric bubble display. Optica 4:298–302ADSGoogle Scholar
  47. Kumagai K, Yamaguchi I, Hayasaki Y (2018) Three-dimensionally structured voxels for volumetric display. Opt Lett 43:3341–3344ADSGoogle Scholar
  48. Kuroiwa Y, Takeshima N, Narita Y, Tanaka S, Hirao K (2004) Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt Express 12:1908–1915ADSGoogle Scholar
  49. Lei M, Yao B, Rupp RA (2006) Structuring by multi-beam interference using symmetric pyramids. Opt Express 14:5803–5811ADSGoogle Scholar
  50. Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J, Jiang Y (2002) Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses. Appl Phys Lett 80:1508–1510ADSGoogle Scholar
  51. Li YC, Cheng LC, Chang CY, Lien CH, Campagnola PJ, Chen SJ (2012) Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt Express 20:19030–19038ADSGoogle Scholar
  52. Liu D, Kuang Z, Perrie W, Scully PJ, Baum A, Edwardson SP, Fearon E, Dearden G, Watkins KG (2010) High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl Phys B Lasers Opt 101:817–823ADSGoogle Scholar
  53. Lou K, Qian SX, Wang XL, Li Y, Gu B, Tu C, Wang HT (2012) Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Opt Express 20:120–127ADSGoogle Scholar
  54. Lou K, Qian SX, Ren ZC, Tu CH, Li YN, Wang HT (2013) Femtosecond laser processing by using patterned vector optical fields. Sci Rep 3:2281Google Scholar
  55. Martínez-León L, Clemente P, Tajahuerce E, Mínguez-Vega G, Mendoza-Yero O, Fernández-Alonso M, Lancis J, Climent V, Andrés P (2009) Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers. Appl Phys Lett 94:011104ADSGoogle Scholar
  56. Matsuo S, Juodkazis S, Misawa H (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A Mater Sci Process 80:683–685ADSGoogle Scholar
  57. Mauclair C, Cheng G, Huot N, Audouard E, Rosenfeld A, Hertel IV, Stoian R (2009) Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt Express 17:3531–3542ADSGoogle Scholar
  58. Maznev AA, Crimmins TF, Nelson KA (1998) How to make femtosecond pulses overlap. Opt Lett 23:1378–1380ADSGoogle Scholar
  59. Merano M, Boyer G, Trisorio A, Chériaux G, Mourou G (2007) Superresolved femtosecond laser ablation. Opt Lett 32:2239–2242ADSGoogle Scholar
  60. Mínguez-Vega G, Lancis J, Caraquitena J, Torres-Company V, Andrés P (2006) High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. Opt Lett 31:2631–2633ADSGoogle Scholar
  61. Mínguez-Vega G, Tajahuerce E, Fernández-Alonso M, Climent V, Lancis J, Caraquitena J, Andrés P (2007) Dispersion-compensated beam-splitting of femtosecond light pulses: wave optics analysis. Opt Express 15:278–288ADSGoogle Scholar
  62. Nakata Y, Okada T, Maeda M (2002) Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Appl Phys Lett 81:4239–4242ADSGoogle Scholar
  63. Obata K, Koch J, Hinze U, Chichkov BN (2010) Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt Express 18:17193–17200ADSGoogle Scholar
  64. Ochiai Y, Kumagai K, Hoshi T, Rekimoto J, Hasegawa S, Hayasaki Y (2016) Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Trans Graph 35(2):17Google Scholar
  65. Sakakura M, Sawano T, Shimotsuma Y, Miura K, Hirao K (2009) Parallel drawing of multiple bent optical waveguides by using a spatial light modulator. Jpn J Appl Phys 48:126507–126511ADSGoogle Scholar
  66. Sakakura M, Sawano T, Shimotsuma Y, Miura K, Hirao K (2011) Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides. Opt Lett 36:1065–1067ADSGoogle Scholar
  67. Sakuma K, Hasegawa S, Takahasi H, Ota M, Hayasaki Y (2015) Holographic laser sweeper for in-process debris removal. Appl Phys B Lasers Opt 119:533–538ADSGoogle Scholar
  68. Sanner N, Huot N, Audouard E, Larat C, Huignard JP, Loiseaux B (2005) Programmable focal spot shaping of amplified femtosecond laser pulses. Opt Lett 30:1479–1481ADSGoogle Scholar
  69. Shishido A, Diviliansky IB, Khoo IC, Mayer TS, Nishimura S, Egan GL, Mallouk TE (2001) Direct fabrication of two-dimensional titania arrays using interference photolithography. Appl Phys Lett 79:3332–3334ADSGoogle Scholar
  70. Sun HB, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J (2001) Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Opt Lett 26:325–327ADSGoogle Scholar
  71. Takahashi H, Hasegawa S, Hayasaki Y (2007) Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. Appl Opt 46:5917–5923ADSGoogle Scholar
  72. Takahashi H, Hasegawa S, Takita A, Hayasaki Y (2008) Sparse-exposure technique in holographic two-photon polymerization. Opt Express 16:16592–16599ADSGoogle Scholar
  73. Thomson RR, Bockelt AS, Ramsay E, Beecher S, Greenaway AH, Kar AK, Reid DT (2008) Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt Express 16:12786–12793ADSGoogle Scholar
  74. Venkatakrishnan K, Sivakumar NR, Hee CW, Tan B, Liang WL, Gan GK (2003) Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser. Appl Phys A Mater Sci Process 77:959–963ADSGoogle Scholar
  75. Vorobyev Y, Guo C (2010) Laser turns silicon superwicking. Opt Express 18:6455–6460ADSGoogle Scholar
  76. Vorobyev Y, Guo C (2011) Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt Express 19:A1031–A1036ADSGoogle Scholar
  77. Wu L, Zhong Y, Chan CT, Wong KS, Wang GP (2005) Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography. Appl Phys Lett 86:241102ADSGoogle Scholar
  78. Yamaji M, Kawashima H, Suzuki J, Tanaka S (2008) Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl Phys Lett 93:041116ADSGoogle Scholar
  79. Yamaji M, Kawashima H, Suzuki J, Tanaka S, Shimizu M, Hirao K, Shimotsuma Y, Miura K (2012) Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram. J Appl Phys 111:083107ADSGoogle Scholar

Authors and Affiliations

  1. 1.Center for Optical Research and Education (CORE)Utsunomiya UniversityUtsunomiyaJapan

Section editors and affiliations

  • Ya Cheng
    • 1
  • Kunihiko Washio
    • 2
  1. 1.State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.Paradigm Laser Research LimitedTokyoJapan

Personalised recommendations