Skip to main content

Optics for Spatially Tailored Ultrashort Pulse Laser Beam Micro-/Nanoprocessing

  • Living reference work entry
  • First Online:
Handbook of Laser Micro- and Nano-Engineering

Abstract

Spatial beam shaping is very important to perform material laser processing with higher quality and higher throughput. The spatial beam shaping can be performed by passive and active optical components. The passive optical components including refractive optical elements such as ordinary lens, microlens array, cylindrical lens, axicon lens, diffractive optical elements, and apertures are described for specially designed shapes. The active optical components as typified by a liquid crystal spatial light modulator (LCSLM) is very useful to perform an arbitrary and variable spatial beam shaping, especially the beam shaping by a computer-generated hologram (CGH) displayed on an LCSLM is powerful and has been widely used in many applications such as two-photon polymerization, optical waveguide fabrication, fabrication of volume phase gratings in glass and polymer, and surface nanostructuring. In this chapter, the principle, features, useful techniques of the passive, and active beam-shaping optical components will be described, and some experimental results for the holographic laser processing implemented with the LCSLM will be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe T, Hasegawa S, Takahashi H, Ota M, Hayasaki Y (2017) In-process debris removal in femtosecond laser processing. Appl Phys A Mater Sci Process 123:700

    ADS  Google Scholar 

  • Allegre OJ, Jin Y, Perrie W, Ouyang J, Fearon E, Edwardson SP, Dearden G (2013) Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21:21198–21207

    ADS  Google Scholar 

  • Amako J, Nagasaka K, Kazuhiro N (2002) Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. Opt Lett 27:969–971

    ADS  Google Scholar 

  • Amako J, Sawaki D, Fujii E (2003) Microstructuring transparent materials by use of nondiffracting ultrashort pulse beams generated by diffractive optics. J Opt Soc Am B 20:2562–2568

    ADS  Google Scholar 

  • Ams M, Marshall GD, Spence DJ, Withford MJ (2005) Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13:5676–5681

    ADS  Google Scholar 

  • Antkowiak M, Torres-Mapa ML, Gunn-Moore F, Dholakia K (2010) Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection. J Biophotonics 3:696–705

    Google Scholar 

  • Bengtsson J (1994) Kinoform design with an optimal-rotation-angle method. Appl Opt 33:6879–6884

    ADS  Google Scholar 

  • Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Furfaro L, Withford MJ, Dudley JM (2010a) High aspect ratio taper-free microchannel fabrication using femtosecond Bessel beams. Opt Express 18:566–574

    ADS  Google Scholar 

  • Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Salut R, Furfaro L, Dudley JM (2010b) High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett 97:81–102

    Google Scholar 

  • Bloomstein TM, Marchant MF, Deneault S, Hardy DE, Rothschild M (2006) 22-nm immersion interference lithography. Opt Express 14:6434–6443

    ADS  Google Scholar 

  • Cai W, Reber TJ, Piestun R (2006) Computer-generated volume holograms fabricated by femtosecond laser micromachining. Opt Lett 31:1836–1838

    ADS  Google Scholar 

  • Cerullo G, Osellame R, Taccheo S, Marangoni M, Polli D, Ramponi R, Laporta P, Silvestri SD (2002) Femtosecond micromachining of symmetric waveguides at 1.5 mm by astigmatic beam focusing. Opt Lett 27:1938–1940

    ADS  Google Scholar 

  • Chaen K, Takahashi H, Hasegawa S, Hayasaki Y (2007) Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt Commun 280:165–172

    ADS  Google Scholar 

  • Cheng Y, Sugioka K, Midorikawa K, Masuda M, Toyoda K, Kawachi M, Shihoyama K (2003) Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt Lett 28:55–57

    ADS  Google Scholar 

  • Courvoisier F, Lacourt PA, Jacquot M, Bhuyan MK, Furfaro L, Dudley JM (2009) Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett 34:3163–3165

    ADS  Google Scholar 

  • Cumming AP, Jesacher A, Booth MJ, Wilson T, Gu M (2011) Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express 19:9419–9425

    ADS  Google Scholar 

  • Daria VR, Stricker C, Bowman R, Redman S, Bachor HA (2009) Arbitrary multisite two-photon excitation in four dimensions. Appl Phys Lett 95:093701

    ADS  Google Scholar 

  • Gecevičius M, Beresna M, Kazansky PG (2013) Polarization sensitive camera by femtosecond laser nanostructuring. Opt Lett 38:4096–4099

    ADS  Google Scholar 

  • Gittard SD, Nguyen A, Obata K, Koroleva A, Narayan RJ, Chichkov BN (2011) Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed Opt Express 2:3167–3178

    Google Scholar 

  • Hasegawa S, Hayasaki Y (2007) Holographic femtosecond laser processing with multiplexed phase Fresnel lenses displayed on the liquid crystal spatial light modulator. Opt Rev 14:208–213

    Google Scholar 

  • Hasegawa S, Hayasaki Y (2009a) Adaptive optimization of hologram in holographic femtosecond laser processing system. Opt Lett 34:22–24

    ADS  Google Scholar 

  • Hasegawa S, Hayasaki Y (2009b) Performance analysis of adaptive optimization of multiplexed phase Fresnel lenses. Jpn J Appl Phys 48:09LE03

    Google Scholar 

  • Hasegawa S, Hayasaki Y (2011) Second harmonic optimization of computer-generated hologram. Opt Lett 36:2943–2945

    ADS  Google Scholar 

  • Hasegawa S, Hayasaki Y (2013) Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt Express 21:12987–12995

    ADS  Google Scholar 

  • Hasegawa S, Hayasaki Y (2014a) Holographic vector wave femtosecond laser processing. Int J Optomechatron 8:73–88

    Google Scholar 

  • Hasegawa S, Hayasaki Y (2014b) Dynamic control of spatial wavelength dispersion in holographic femtosecond laser processing. Opt Lett 39:478–481

    ADS  Google Scholar 

  • Hasegawa S, Hayasaki Y, Nishida N (2006) Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt Lett 31:1705–1707

    ADS  Google Scholar 

  • Hasegawa S, Shiono K, Hayasaki Y (2015) Femtosecond laser processing with a holographic line-shaped beam. Opt Express 23:23185–23194

    ADS  Google Scholar 

  • Hasegawa S, Ito H, Toyoda H, Hayasaki Y (2016) Massively parallel femtosecond laser processing. Opt Express 24:18513–18524

    ADS  Google Scholar 

  • Hasegawa S, Ito H, Toyoda H, Hayasaki Y (2018) Diffraction-limited ring beam generated by radial grating. OSA Continuum 1:283–294

    Google Scholar 

  • Hayasaki Y, Yamamoto H, Nishida N (1998) Optical dependence of spatial frequency of formed patterns on focusing deviation in nonlinear optical ring resonator. Opt Commun 151:263–267

    ADS  Google Scholar 

  • Hayasaki Y, Yamamoto H, Nishida N (2000) Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback. J Opt Soc Am B 17:1211–1215

    ADS  Google Scholar 

  • Hayasaki Y, Sugimoto T, Takita A, Nishida N (2005) Variable holographic femtosecond laser processing by use of a spatial light modulator. Appl Phys Lett 87:031101

    ADS  Google Scholar 

  • Hayasaki Y, Nishitani M, Takahashi H, Yamamoto H, Takita A, Suzuki D, Hasegawa S (2012) Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl Phys A Mater Sci Process 107:357–362

    ADS  Google Scholar 

  • Imamoto H, Kanehira S, Wang X, Kametani K, Sakakura M, Shimotsuma Y, Miura K, Hirao K (2011) Fabrication and characterization of silicon antireflection structures for infrared rays using a femtosecond laser. Opt Lett 36:1176–1178

    ADS  Google Scholar 

  • Jesacher A, Booth MJ (2010) Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 18:21090–21099

    ADS  Google Scholar 

  • Jin Y, Allegre OJ, Perrie W, Abrams K, Ouyang J, Fearon E, Edwardson SP, Dearden G (2013) Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21:25333–25343

    ADS  Google Scholar 

  • Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S (2005) Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86:044–102

    Google Scholar 

  • Kawamura K, Ogawa T, Sarukura N, Hirano M, Hosono H (2000) Fabrication of surface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses. Appl Phys B Lasers Opt 71:119–121

    ADS  Google Scholar 

  • Kelemen L, Valkai S, Ormos P (2007) Parallel photopolymerisation with complex light patterns generated by diffractive optical elements. Opt Express 15:14488–14497

    ADS  Google Scholar 

  • Klein-Wiele JH, Simon P (2003) Fabrication of periodic nanostructures by phase-controlled multiple-beam interference. Appl Phys Lett 83:4707–4709

    ADS  Google Scholar 

  • Kondo T, Matsuo S, Juodkazis S, Misawa H (2001) Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals. Appl Phys Lett 79:725–727

    ADS  Google Scholar 

  • Kuang Z, Perrie W, Leach J, Sharp M, Edwardson S, Padgett M, Dearden G, Watkins K (2008) High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl Surf Sci 255:2284–2289

    ADS  Google Scholar 

  • Kuang Z, Liu D, Perrie W, Edwardson S, Sharp M, Fearon E, Dearden G, Watkins K (2009) Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl Surf Sci 255:6582–6588

    ADS  Google Scholar 

  • Kumagai K, Suzuki D, Hasegawa S, Hayasaki Y (2015) Volumetric display with holographic parallel optical access and multilayer fluorescent screen. Opt Lett 40:3356–3359

    ADS  Google Scholar 

  • Kumagai K, Hasegawa S, Hayasaki Y (2017) Volumetric bubble display. Optica 4:298–302

    ADS  Google Scholar 

  • Kumagai K, Yamaguchi I, Hayasaki Y (2018) Three-dimensionally structured voxels for volumetric display. Opt Lett 43:3341–3344

    ADS  Google Scholar 

  • Kuroiwa Y, Takeshima N, Narita Y, Tanaka S, Hirao K (2004) Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. Opt Express 12:1908–1915

    ADS  Google Scholar 

  • Lei M, Yao B, Rupp RA (2006) Structuring by multi-beam interference using symmetric pyramids. Opt Express 14:5803–5811

    ADS  Google Scholar 

  • Li Y, Watanabe W, Yamada K, Shinagawa T, Itoh K, Nishii J, Jiang Y (2002) Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses. Appl Phys Lett 80:1508–1510

    ADS  Google Scholar 

  • Li YC, Cheng LC, Chang CY, Lien CH, Campagnola PJ, Chen SJ (2012) Fast multiphoton microfabrication of freeform polymer microstructures by spatiotemporal focusing and patterned excitation. Opt Express 20:19030–19038

    ADS  Google Scholar 

  • Liu D, Kuang Z, Perrie W, Scully PJ, Baum A, Edwardson SP, Fearon E, Dearden G, Watkins KG (2010) High-speed uniform parallel 3D refractive index micro-structuring of poly(methyl methacrylate) for volume phase gratings. Appl Phys B Lasers Opt 101:817–823

    ADS  Google Scholar 

  • Lou K, Qian SX, Wang XL, Li Y, Gu B, Tu C, Wang HT (2012) Two-dimensional microstructures induced by femtosecond vector light fields on silicon. Opt Express 20:120–127

    ADS  Google Scholar 

  • Lou K, Qian SX, Ren ZC, Tu CH, Li YN, Wang HT (2013) Femtosecond laser processing by using patterned vector optical fields. Sci Rep 3:2281

    Google Scholar 

  • Martínez-León L, Clemente P, Tajahuerce E, Mínguez-Vega G, Mendoza-Yero O, Fernández-Alonso M, Lancis J, Climent V, Andrés P (2009) Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers. Appl Phys Lett 94:011104

    ADS  Google Scholar 

  • Matsuo S, Juodkazis S, Misawa H (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A Mater Sci Process 80:683–685

    ADS  Google Scholar 

  • Mauclair C, Cheng G, Huot N, Audouard E, Rosenfeld A, Hertel IV, Stoian R (2009) Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt Express 17:3531–3542

    ADS  Google Scholar 

  • Maznev AA, Crimmins TF, Nelson KA (1998) How to make femtosecond pulses overlap. Opt Lett 23:1378–1380

    ADS  Google Scholar 

  • Merano M, Boyer G, Trisorio A, Chériaux G, Mourou G (2007) Superresolved femtosecond laser ablation. Opt Lett 32:2239–2242

    ADS  Google Scholar 

  • Mínguez-Vega G, Lancis J, Caraquitena J, Torres-Company V, Andrés P (2006) High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. Opt Lett 31:2631–2633

    ADS  Google Scholar 

  • Mínguez-Vega G, Tajahuerce E, Fernández-Alonso M, Climent V, Lancis J, Caraquitena J, Andrés P (2007) Dispersion-compensated beam-splitting of femtosecond light pulses: wave optics analysis. Opt Express 15:278–288

    ADS  Google Scholar 

  • Nakata Y, Okada T, Maeda M (2002) Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams. Appl Phys Lett 81:4239–4242

    ADS  Google Scholar 

  • Obata K, Koch J, Hinze U, Chichkov BN (2010) Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt Express 18:17193–17200

    ADS  Google Scholar 

  • Ochiai Y, Kumagai K, Hoshi T, Rekimoto J, Hasegawa S, Hayasaki Y (2016) Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Trans Graph 35(2):17

    Google Scholar 

  • Sakakura M, Sawano T, Shimotsuma Y, Miura K, Hirao K (2009) Parallel drawing of multiple bent optical waveguides by using a spatial light modulator. Jpn J Appl Phys 48:126507–126511

    ADS  Google Scholar 

  • Sakakura M, Sawano T, Shimotsuma Y, Miura K, Hirao K (2011) Improved phase hologram design for generating symmetric light spots and its application for laser writing of waveguides. Opt Lett 36:1065–1067

    ADS  Google Scholar 

  • Sakuma K, Hasegawa S, Takahasi H, Ota M, Hayasaki Y (2015) Holographic laser sweeper for in-process debris removal. Appl Phys B Lasers Opt 119:533–538

    ADS  Google Scholar 

  • Sanner N, Huot N, Audouard E, Larat C, Huignard JP, Loiseaux B (2005) Programmable focal spot shaping of amplified femtosecond laser pulses. Opt Lett 30:1479–1481

    ADS  Google Scholar 

  • Shishido A, Diviliansky IB, Khoo IC, Mayer TS, Nishimura S, Egan GL, Mallouk TE (2001) Direct fabrication of two-dimensional titania arrays using interference photolithography. Appl Phys Lett 79:3332–3334

    ADS  Google Scholar 

  • Sun HB, Xu Y, Juodkazis S, Sun K, Watanabe M, Matsuo S, Misawa H, Nishii J (2001) Arbitrary-lattice photonic crystals created by multiphoton microfabrication. Opt Lett 26:325–327

    ADS  Google Scholar 

  • Takahashi H, Hasegawa S, Hayasaki Y (2007) Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator. Appl Opt 46:5917–5923

    ADS  Google Scholar 

  • Takahashi H, Hasegawa S, Takita A, Hayasaki Y (2008) Sparse-exposure technique in holographic two-photon polymerization. Opt Express 16:16592–16599

    ADS  Google Scholar 

  • Thomson RR, Bockelt AS, Ramsay E, Beecher S, Greenaway AH, Kar AK, Reid DT (2008) Shaping ultrafast laser inscribed optical waveguides using a deformable mirror. Opt Express 16:12786–12793

    ADS  Google Scholar 

  • Venkatakrishnan K, Sivakumar NR, Hee CW, Tan B, Liang WL, Gan GK (2003) Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser. Appl Phys A Mater Sci Process 77:959–963

    ADS  Google Scholar 

  • Vorobyev Y, Guo C (2010) Laser turns silicon superwicking. Opt Express 18:6455–6460

    ADS  Google Scholar 

  • Vorobyev Y, Guo C (2011) Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt Express 19:A1031–A1036

    ADS  Google Scholar 

  • Wu L, Zhong Y, Chan CT, Wong KS, Wang GP (2005) Fabrication of large area two- and three-dimensional polymer photonic crystals using single refracting prism holographic lithography. Appl Phys Lett 86:241102

    ADS  Google Scholar 

  • Yamaji M, Kawashima H, Suzuki J, Tanaka S (2008) Three dimensional micromachining inside a transparent material by single pulse femtosecond laser through a hologram. Appl Phys Lett 93:041116

    ADS  Google Scholar 

  • Yamaji M, Kawashima H, Suzuki J, Tanaka S, Shimizu M, Hirao K, Shimotsuma Y, Miura K (2012) Homogeneous and elongation-free 3D microfabrication by a femtosecond laser pulse and hologram. J Appl Phys 111:083107

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Hayasaki .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hayasaki, Y., Hasegawa, S. (2020). Optics for Spatially Tailored Ultrashort Pulse Laser Beam Micro-/Nanoprocessing. In: Sugioka, K. (eds) Handbook of Laser Micro- and Nano-Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-69537-2_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69537-2_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69537-2

  • Online ISBN: 978-3-319-69537-2

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics