3D Subtractive Printing with Ultrashort Laser Pulses

Living reference work entry


The recent evolution in fast 3D ablation are overviewed in the context of 3D printing and in terms of the new burst laser mode of operation, which delivers previously unexplored capabilities for material processing. Material removal rates at different ablation modes are compared.


Ultrashort pulses Laser fabrication Laser ablation Additive manufacturing Subtractive manufacturing 3D printing Lithography Nanotechnology 



EU LASERLAB-EUROPE (grant agreement No. 871124, Horizon 2020 research and innovation program) project is acknowledged for the financial support. Window-on-Photonics R&D, Ltd. is acknowledged for joint development grant and laser fabrication facility. Fs-laser fabrication was supported via the Australian Research Council grants DP190103284 and LP190100505. Discussion of various aspects of light-matter interactions on ultrashort times and small volumes with colleagues and coauthors Professors E. Gamaly, Y. Bellouard, Y. Hayasaki, K. Hatanaka, A. Rode, L. Zhigilei, and A. Dubietis were very helpful for our own research work.


  1. Anand V, Maksimovic J, Katkus T, Ng SH, Ulčinas O, Mikutis M, Baltrukonis J, Urbas A, Šlekys G, Ogura H, Sagae D, Pikuz T, Somekawa T, Ozaki N, Vailionis A, Seniutinas G, Mizeikis V, Glazebrook K, Brodie JP, Stoddart PR, Rapp L, Rode AV, Gamaly EG, Juodkazis S (2020) All femtosecond optical pump and X-ray probe: holey-axicon for free electron lasers. J Opt Photonics 1:(accepted)Google Scholar
  2. Böhme R, Braun A, Zimmer K (2002) Backside etching of uv-transparent materials at the interface to liquids. Appl Surf Sci 186(1–4):276–281ADSCrossRefGoogle Scholar
  3. Buividas R, Rekstyte S, Malinauskas M, Juodkazis S (2013) Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses. Opt Mat Express 3(10):1674–1686ADSCrossRefGoogle Scholar
  4. Buividas R, Mikutis M, Juodkazis S (2014) Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances. Prog Quant Electron 38:119–156ADSCrossRefGoogle Scholar
  5. Butkus S, Jukna V, Paipulas D, Barkauskas M, Sirutkaitis V (2020) Micromachining of invar foils with GHz, MHz and kHz femtosecond burst modes. Micromachines 11:733CrossRefGoogle Scholar
  6. Chu W, Tan Y, Wang P, Xu J, Li W, Qi J, Cheng Y (2018) Centimeter-height 3d printing with femtosecond laser two-photon polymerization. Adv Mater Technol 3(5):1700396CrossRefGoogle Scholar
  7. Cummings CS, Bleakney W (1940) Products of ionization by electron impact in methyl and ethyl alcohol. Phys Rev 58:787ADSCrossRefGoogle Scholar
  8. Förster DJ, Faas S, Gröninger S, Bauer F, Michalowski A, Weber R, Graf T (2018) Shielding effects and re-deposition of material during processing of metals with bursts of ultra-short laser pulses. Appl Surf Sci 440:926–931ADSCrossRefGoogle Scholar
  9. Gaižauskas E, Vanagas E, Jarutis V, Juodkazis S, Mizeikis V, Misawa H (2006) Discrete damage traces from filamentation of Bessel-gauss pulses. Opt Lett 31(1):80–82ADSCrossRefGoogle Scholar
  10. Gamaly E, Rode A (2019) Ultrafast re-structuring of the electronic landscape of transparent dielectrics: new material states (Die-Met). Appl Phys A 124(3):278ADSCrossRefGoogle Scholar
  11. Gedvilas M, Miksys J, Raciukaitis G (2015) Flexible periodical micro- and nano-structuring of a stainless steel surface using dual-wavelength double-pulse picosecond laser irradiation. RSC Adv 5:75075–75080. Scholar
  12. Gedvilas M, Mikšys J, Berzinš J, Stankevič V, Račiukaitis G (2017) Multi-photon absorption enhancement by dual-wavelength double-pulse laser irradiation for efficient dicing of sapphire wafers. Sci Rep 7(1):5218ADSCrossRefGoogle Scholar
  13. Gissibl T, Thiele S, Herkommer A, Giessen H (2016) Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nature Comm 7:11763ADSCrossRefGoogle Scholar
  14. Gottmann J, Hermans M, Repiev N, Ortmann J (2017a) Selective laser-induced etching of 3D precision quartz glass components for microfluidic applicationsâĂ Ťup-scaling of complexity and speed. Micromachines 8:110CrossRefGoogle Scholar
  15. Gottmann J, Hermans M, Repiev N, Ortmann J (2017b) Selective laser-induced etching of 3d precision quartz glass components for microfluidic applicationsâĂ Ťup-scaling of complexity and speed. Micromachines 8(4).
  16. Guck J, Ananthakrishnan R, Mahmood H, Moon TJ, Cunningham CC, Käs J (2001) The optical stretcher: a novel laser tool to micromanipulate cells. Biophys J 81:767–784CrossRefGoogle Scholar
  17. Hsu WH, Masim F, Balcytis A, Huang HH, Yonezawa T, Kuchmizhak A, Juodkazis S, Hatanaka K (2018) Enhancement of X-ray emission from nanocolloidal gold suspensions under double-pulse excitation. Beilstein J Nanotechnol 9:2609âĂŞ2617CrossRefGoogle Scholar
  18. Hua JG, Ren H, Jia A, Tian ZN, Wang L, Juodkazis S, Chen QD, Sun HB (2020) Convex silica microlens arrays via femtosecond laser writing. Opt Lett 45(3):636–639ADSCrossRefGoogle Scholar
  19. Jayawardhana S, Rosa L, Juodkazis S, Stoddart PR (2013) Additional enhancement of electric field in surface-enhanced Raman scattering due to Fresnel mechanism. Sci Rep 3:2335ADSCrossRefGoogle Scholar
  20. Jonusauskas L, Skliutas E, Butkus S, Malinauskas M (2015) Custom on demand 3D printing of functional microstructures. Lith J Phys 55(3)Google Scholar
  21. Jonusauskas L, Rekstyte S, Buividas R, Butkus S, Gadonas R, Juodkazis S, Malinauskas M (2017) Hybrid subtractive-additive-welding microfabrication for lab-on-chip (loc) applications via single amplified femtosecond laser source. Opt Eng 56(9):094108ADSCrossRefGoogle Scholar
  22. Jonusauskas L, Gailevicius D, Rekstyte S, Baldacchini T, Juodkazis S, Malinauskas M (2019) Mesoscale laser 3d printing. Opt Express 27(11):15205–15221ADSCrossRefGoogle Scholar
  23. Juodkazis S (2020) 3D laser printing: high resolution and throughput. In: Conference on lasers and electro-optics OSA technical digest. Optical Society of America. OSA, p SF2R.1Google Scholar
  24. Juodkazis S, Okuno H, Kujime N, Matsuo S, Misawa H (2004) Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure. Appl Phys A 79:1555–1559. Scholar
  25. Juodkazis S, Misawa H, Maksimov I (2004a) Thermal accumulation effect in three-dimensional recording by picosecond pulses. Appl Phys Lett 85(22):5239–5241ADSCrossRefGoogle Scholar
  26. Juodkazis S, Yamasaki K, Mizeikis V, Matsuo S, Misawa H (2004b) Formation of embedded patterns in glasses using femtosecond irradiation. Appl Phys A Mater Sci Process 79(4–6):1549–1553ADSCrossRefGoogle Scholar
  27. Juodkazis S, Mizeikis V, Seet KK, Miwa M, Misawa H (2005) Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnol 16:846–849ADSCrossRefGoogle Scholar
  28. Juodkazis S, Nishimura K, Misawa H (2007) In-bulk and surface structuring of sapphire by femtosecond pulses. Appl Surf Sci 253(15):6539–6544ADSCrossRefGoogle Scholar
  29. Juodkazis S, Nishi Y, Misawa H (2008) Femtosecond laser-assisted formation of channels in sapphire using KOH solution. RRL Phys Stat Sol 2(6):275–277CrossRefGoogle Scholar
  30. Kerse CS, Kalaycioğlu H, Elahi P, Çetin B, Kesim DK, Akçaalan Ö, Yavaş S, Aşik MD, Öktem B, Hoogland H, Holzwarth R, Ilday FÖ (2016) Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537:84–88ADSCrossRefGoogle Scholar
  31. Knappe R, Haloui H, Seifert A, Weis A, Nebel A (2010) Scaling ablation rates for picosecond lasers using burst micromachining. SPIE Proc:7585.
  32. Kudrius T, Šlekys G, Juodkazis S (2010) Surface-texturing of sapphire by femtosecond laser pulses for photonic applications. J Phys D Appl Phys 43(14):145501ADSCrossRefGoogle Scholar
  33. Li QL, Lu YM, Hua JG, Yu YH, Wang L, Chen QD, Juodkazis S, Sun HB (2017) Multilevel phase-type diffractive lens embedded in sapphire. Opt Lett 42(19):3832–3835ADSCrossRefGoogle Scholar
  34. Li Z, Wang L, Fan H, Yu Y, Chen Q, Juodkazis S, Sun H (2020) O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl 9(1):41CrossRefGoogle Scholar
  35. Lin Z, Liu H, Ji L, Lin W, Hong M (2020) Realization of 10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20(7):4947âĂŞ4952CrossRefGoogle Scholar
  36. Liu X, Yu L, Yang S, Chen Q, Wang L, Juodkazis S, Sun H (2019a) Optical nanofabrication of concave microlens arrays. Laser Photon Rev 13:1800272ADSCrossRefGoogle Scholar
  37. Liu XQ, Bai BF, Chen QD, Sun HB (2019b) Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2:190021Google Scholar
  38. Liu H, Li Y, Lin W, Hong M (2020) High-aspect-ratio crack-free microstructures fabrication on sapphire by femtosecond laser ablation. Opt Laser Technol 132:106472CrossRefGoogle Scholar
  39. Luther-Davies B, Rode A, Madsen N, Gamaly EG (2005) Picosecond high-repitition-rate pulsed laser ablation of dielectrics: the effect of energy accumulation between pulses. Opt Eng 44:051102ADSCrossRefGoogle Scholar
  40. Malinauskas M, Rekstyte S, Lukosevicius L, Butkus S, Balciunas E, Peciukaityte M, Baltriukiene D, Bukelskiene V, Butkevicius A, Kucevicius P, Rutkunas V, Juodkazis S (2014) 3d microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5(4):839–858CrossRefGoogle Scholar
  41. Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V, Buividas R, Juodkazis S (2016) Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5(8):e16133ADSCrossRefGoogle Scholar
  42. Marcinkevicius A, Juodkazis S, Matsuo S, Mizeikis V, Misawa H (2001) Application of Bessel beams for microfabrication of dielectrics by femtosecond laser. Jpn J Appl Phys 40(11A):L1197–L1199ADSCrossRefGoogle Scholar
  43. Marrian C, Tennant D (2003) Nanofabrication. J Vac Sci Technol A 21:S207âĂŞS215CrossRefGoogle Scholar
  44. Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photonabsorbed photopolymerization. Opt Lett 22(2):132–134ADSCrossRefGoogle Scholar
  45. Matsumoto H, Lin Z, Kleinert J (2018) Ultrafast laser ablation of copper with ghz bursts. SPIE proc, In, p 10519Google Scholar
  46. Matsuo S, Juodkazis S, Misawa H (2005) Femtosecond laser microfabrication of periodic structures using a microlens array. Appl Phys A Mater Sci Process 80(4):683–685ADSCrossRefGoogle Scholar
  47. Matsuo S, Tabuchi Y, Okada T, Juodkazis S, Misawa H (2007) Femtosecond laser assisted etching of quartz: microstructuring from inside. Appl Phys A 84(1–2):99–102ADSGoogle Scholar
  48. Metzner D, Lickschat P, Weißmantel S (2019) Investigations of qualitative aspects with burst mode ablation of silicon and cemented tungsten carbide. Appl Phys A:125.
  49. Mikutis M, Kudrius T, Šlekys G, Paipulas D, Juodkazis S (2013) High 90% efficiency Bragg gratings formed in fused silica by femtosecond gauss-Bessel laser beams. Opt Mat Express 3(11):1862–1871ADSCrossRefGoogle Scholar
  50. Mizunami T, Takagi K (1994) Wavelength dependence of two-photon absorption properties of silica optical fibers. Opt Lett 19(7):463ADSCrossRefGoogle Scholar
  51. Mourou G, Tajima T, Bulanov S (2006) Optics in the relativistic regime. Rev Mod Phys 78:309ADSCrossRefGoogle Scholar
  52. Mur J, Petkovšek J (2019) Near-thz bursts of pulses – governing surface ablation mechanisms for laser material processing. Appl Surf Sci 478:355–360ADSCrossRefGoogle Scholar
  53. Neuenschwander B, Jaeggi B, Foerster DJ, Kramer T, Remund S (2019) Influence of the burst mode onto the specific removal rate for metals and semiconductors. J Laser Appl 31(2):022203CrossRefGoogle Scholar
  54. Noyes WA Jr (1935) The ionization potential of acetone vapor. J Chem Phys 3:430–432ADSCrossRefGoogle Scholar
  55. Seniutinas G, Balčytis A, Reklaitis I, Chen F, Davis J, David C, Juodkazis S (2017) Tipping solutions: emerging 3d nano-fabrication/−imaging technologies. Nano 6(5):923–941Google Scholar
  56. Sugioka K (2019) Hybrid femtosecond laser three-dimensional micro-and nanoprocessing: a review. Int J Extrem Manuf 1:012003CrossRefGoogle Scholar
  57. Sun H, Kawata S (2004) Two-photon Photopolymerization and 3D lithographic microfabrication. Springer, BerlinGoogle Scholar
  58. Sun K, Suzuki N, Li Z, Araki R, Ueno K, Juodkazis S, Abe M, Noji S, Misawa H (2008) Electrophoretic chip for fractionation of selective DNA fragment. Electrophoresis 29(19):3959–3963CrossRefGoogle Scholar
  59. Tickunas T, Perrenoud M, Butkus S, Gadonas R, Rekstyte S, Malinauskas M, Paipulas D, Bellouard Y, Sirutkaitis V (2017) Combination of additive and subtractive laser 3d microprocessing in hybrid glass/polymer microsystems for chemical sensing applications. Opt Express 25(21):26280ADSCrossRefGoogle Scholar
  60. Wang J, Niino H, Yabe A (1999) One-step microfabrication of fused silica by laser ablation of an organic solution. Appl Phys A 68(1):111âĂŞ113CrossRefGoogle Scholar
  61. Wang L, Chen Q, Cao X, Buividas R, Wang X, Juodkazis S, Sun H (2017) Plasmonic nanoprinting: large-area nanoscale energy deposition for efficient surface texturing. Light Sci Appl 6(12):e17112CrossRefGoogle Scholar
  62. Wang C, Yang L, Zhang C, Rao S, Wang Y, Wu S, Li J, Hu Y, Wu D, Chu J et al (2019) Multilayered skyscraper microchips fabricated by hybrid âĂIJan-in-oneâĂİ femtosecond laser processing. Microsyst Nanoeng 5(1):17ADSCrossRefGoogle Scholar
  63. Xu J, Kawano H, Liu W, Hanada Y, Lu P, Miyawaki A, Midorikawa K, Sugioka K (2017) Controllable alignment of elongated microorganisms in a 3d microspace using electrofluidic devices manufactured by hybrid femtosecond laser microfabrication. Microsyst Nanoengin 3:16078CrossRefGoogle Scholar
  64. Zhang C, Zhang J, Chen R, Li J, Wang C, Cao R, Zhang J, Ye H, Zhai H, Sugioka K (2020) Rapid fabrication of high-resolution multi-scale microfluidic devices based on the scanning of patterned femtosecond laser. Opt Lett 45(14):3929–3932ADSCrossRefGoogle Scholar
  65. Zheng Y, Rosa L, Thai T, Ng SH, Juodkazis S, Bach U (2019) Phase controlled SERS enhancement. Sci Rep 9:744Google Scholar
  66. Zhou R, Lin S, Ding Y, Yang H, Ong Y, Hong M (2018) Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1:180014CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Nanotechnology facilitySwinburne University of TechnologyHawthornAustralia
  2. 2.Laser Research Center, Faculty of PhysicsVilnius UniversityVilniusLithuania
  3. 3.Tokyo Tech World Research Hub Initiative (WRHI), School of Materials and Chemical TechnologyTokyo Institute of TechnologyTokyoJapan
  4. 4.Centre for Micro-Photonics (H74)Swinburne University of TechnologyHawthornAustralia

Section editors and affiliations

  • Minghui Hong
    • 1
  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations