Stereolithography and Two-Photon Polymerization
- 2 Citations
- 56 Downloads
Abstract
Stereolithography and two-photon lithography based on photopolymerization, as high-resolution 3D printing techniques, are widely used for fabricating complex 3D models with dimensions ranging from several hundred centimeters to micrometers. In particular, two-photon polymerization and reduction can be employed to fabricate polymeric as well as metallic microstructures with a sub-100 nm resolution, beyond the diffraction limit of light. Over the past three decades, different photocurable materials such as synthetic polymers, nanocomposites, and hydrogels were developed and employed to fabricate prototypes as well as functional 3D components. By combining silicone and polymer molding processes using a 3D-printed master model, the reproduction of complex 3D microstructures consisting of polymers and ceramics is possible. Even movable microparts can be reproduced via a membrane-assisted transfer molding technique. Moreover, the functionalization of 3D-printed polymer micro-/nanostructures is realized by combining postprocesses such as electroless plating and chemical and thermal treatments. Recently, several types of multimaterial stereolithography and two-photon lithography have also been demonstrated, and highly functional 3D structures consisting of multiple materials with varied properties such as color, refractive index, and mechanical strength can be fabricated without an assembly process. Multimaterial 3D micro-/nanoprinting can further miniaturize and integrate microdevices. Therefore, stereolithography and two-photon lithography will have applications in photonics, metamaterials, microelectromechanical systems, lab-on-a-chip, biology, dentistry, and medicine. In this chapter, a brief history, the basic features, and recent progress of stereolithography and two-photon lithography are summarized.
Keywords
3D printing Stereolithography Direct writing 3D molding Two-photon lithography Photopolymerization Photoreduction Photopolymer CeramicsReferences
- Baldacchini T (ed) (2019) Three-dimensional microfabrication using two-photon polymerization, 2nd edn. New York, William AndrewGoogle Scholar
- Bauer J, Schroer A, Schaedler TA et al (2016) Approaching theoretical strength in glassy carbon nanolattices. Nat Mater 15(4):438–443. https://doi.org/10.1038/nmat4561ADSCrossRefGoogle Scholar
- Bauer J, Meza LR, Schaedler TA et al (2017) Nanolattices: an emerging class of mechanical metamaterials. Adv Mater 29(40):1701850. https://doi.org/10.1002/adma.201701850CrossRefGoogle Scholar
- Bückmann T, Stenger N, Kadic M et al (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24(20):2710–2714. https://doi.org/10.1002/adma.201200584CrossRefGoogle Scholar
- Cao YY, Takeyasu N, Tanaka T et al (2009) 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5(10):1144–1148. https://doi.org/10.1002/smll.200801179CrossRefGoogle Scholar
- Carlotti M, Mattoli V (2019) Functional materials for two-photon polymerization in microfabrication. Small 15(40):1902687. https://doi.org/10.1002/smll.201902687CrossRefGoogle Scholar
- Chen Z, Li X, Li J et al (2019) 3D printing of ceramics: a review. J Eur Ceram 39(4):661–687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013CrossRefGoogle Scholar
- Choi JW, Kim HC, Wicker R (2011) Multi-material stereolithography. J Mater Process Technol 211(3):318–328. https://doi.org/10.1016/j.jmatprotec.2010.10.003CrossRefGoogle Scholar
- Daicho Y, Murakami T, Hagiwara T, Maruo S (2013) Formation of three-dimensional carbon microstructures via two-photon microfabrication and microtransfer molding. Opt Mater 3(6):875–883. https://doi.org/10.1364/OME.3.000875CrossRefGoogle Scholar
- de Beer MP, Van Der Laan HL, Cole MA et al (2019) Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv. 5(1):eaau8723. https://doi.org/10.1126/sciadv.aau8723ADSCrossRefGoogle Scholar
- Dietrich PI, Blaicher M, Reuter I et al (2018) In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration. Nature Photon 12:241–247. https://doi.org/10.1038/s41566-018-0133-4
- Farrer RA, LaFratta CN, Li L et al (2006) Selective functionalization of 3-D polymer microstructures. J Am Chem Soc 128(6):1796–1797. https://doi.org/10.1021/ja0583620CrossRefGoogle Scholar
- Fischer J, Wegener M (2013) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7(1):22–44. https://doi.org/10.1002/lpor.201100046ADSCrossRefGoogle Scholar
- Fischer J, von Freymann G, Wegener M (2010) The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater 22(32):3578–3582. https://doi.org/10.1002/adma.201000892CrossRefGoogle Scholar
- Gan Z, Cao Y, Evans RA et al (2013) Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat Commun 4(1):1–7. https://doi.org/10.1038/ncomms3061ADSCrossRefGoogle Scholar
- Gissibl T, Thiele S, Herkommer A et al (2016) Two-photon direct laser writing of ultracompact multilens objectives. Nat. Photonics 10(8):554. https://doi.org/10.1038/nphoton.2016.121ADSCrossRefGoogle Scholar
- Haske W, Chen VW, Hales JM et al (2007) 65 nm feature sizes using visible wavelength 3-D multiphoton lithography. Opt Express 15(6):3426–3436. https://doi.org/10.1364/OE.15.003426ADSCrossRefGoogle Scholar
- Ikegami T, Stocker MP, Monaco K et al (2012) Fabrication of three-dimensional metalized movable microstructures by the combination of two-photon microfabrication and electroless plating. Jpn J Appl Phys 51(6S):06FL17. https://doi.org/10.1143/JJAP.51.06FL17CrossRefGoogle Scholar
- Ikuta K, Hirowatari K (1993) Real three-dimensional micro fabrication using stereo lithography and metal molding. In: Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems (MEMS 93), pp 42–47. https://doi.org/10.1109/MEMSYS.1993.296949
- Ikuta K, Maruo S, Kojima S (1998) New micro stereo lithography for freely movable 3D structure -Super IH process with submicron resolution. In: Proceedings of the IEEE International Workshop on Micro Electro Mechanical Systems (MEMS 98), pp 290–295. https://doi.org/10.1109/MEMSYS.1998.659770
- Kadic M, Bückmann T, Stenger N et al (2012) On the practicability of pentamode mechanical metamaterials. Appl Phys Lett 100:191901. https://doi.org/10.1063/1.4709436ADSCrossRefGoogle Scholar
- Kawata S, Sun HB, Tanaka T et al (2001) Finer features for functional microdevices. Nature 412(6848):697–698. https://doi.org/10.1038/35089130ADSCrossRefGoogle Scholar
- Klein F, Striebel T, Fischer J et al (2010) Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 22(8):868–871. https://doi.org/10.1002/adma.200902515CrossRefGoogle Scholar
- Kobayashi Y, Cordonier CEJ, Noda Y et al (2019) Tailored cell sheet engineering using microstereolithography and electrochemical cell transfer. Sci Rep 9:10415. https://doi.org/10.1038/s41598-019-46801-9ADSCrossRefGoogle Scholar
- Kodama H (1981) Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev Sci Instrum 52(11):1770–1773. https://doi.org/10.1063/1.1136492ADSCrossRefGoogle Scholar
- Komori T, Furukawa T, Iijima M et al (2020) Multi-scale laser direct writing of conductive metal microstructures using a 405-nm blue laser. Opt Express 28(6):8363–8370. https://doi.org/10.1364/OE.388593ADSCrossRefGoogle Scholar
- Kostovski G, Stoddart PR, Mitchell A (2014) The optical fiber tip: an inherently light-coupled microscopic platform for micro-and nanotechnologies. Adv Mater 26(23):3798–3820. https://doi.org/10.1002/adma.201304605CrossRefGoogle Scholar
- Kowsari K, Akbari S, Wang D et al (2018) High-efficiency high-resolution multimaterial fabrication for digital light processing-based three-dimensional printing. 3D Print Addit Manuf 5(3):185–193. https://doi.org/10.1089/3dp.2018.0004CrossRefGoogle Scholar
- LaFratta CN, Li L, Fourkas JT (2006) Soft-lithographic replication of 3D microstructures with closed loops. Proc Natl Acad Sci 103(23):8589–8594. https://doi.org/10.1073/pnas.0603247103ADSCrossRefGoogle Scholar
- Li L, Gattass RR, Gershgoren E et al (2009) Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324(5929):910–913. https://doi.org/10.1126/science.1168996ADSCrossRefGoogle Scholar
- Li Z, Pucher N, Cicha K et al (2013) A straightforward synthesis and structure-activity relationship of highly efficient initiators for two-photon polymerization. Macromolecules 46(2):352–361. https://doi.org/10.1021/ma301770aADSCrossRefGoogle Scholar
- Li H, Song L, Sun J et al (2019) Dental ceramic prostheses by stereolithography-based additive manufacturing: potentials and challenges. Adv Appl Ceram 118(1–2):30–36. https://doi.org/10.1080/17436753.2018.1447834CrossRefGoogle Scholar
- Liaros N, Fourkas JT (2019) Ten years of two-color photolithography [Invited]. Opt Mater 9(7):3006–3020. https://doi.org/10.1364/OME.9.003006CrossRefGoogle Scholar
- Lightman AJ (1995) Rapid product realization. Opt Photonics News 6(7):23–27ADSCrossRefGoogle Scholar
- Ligon SC, Liska R, Stampfl J et al (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074CrossRefGoogle Scholar
- Ligon-Auer SC, Schwentenwein M, Gorsche C et al (2016) Toughening of photocurable polymer networks: a review. Polym Chem 7(2):257–286. https://doi.org/10.1039/c5py01631bCrossRefGoogle Scholar
- Ma ZC, Zhang YL, Han B et al (2018) Femtosecond-laser direct writing of metallic micronanostructures: from fabrication strategies to future applications. Small Methods 2(7):1700413. https://doi.org/10.1002/smtd.201700413CrossRefGoogle Scholar
- Maruo S (2018) Fabrication of functional ceramic devices produced by three-dimensional molding using microstereolithography. In: Naito et al (eds) Nanoparticle technology handbook, 3rd edn. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-64110-6.00073-1CrossRefGoogle Scholar
- Maruo S, Ikuta K (2000) Three-dimensional microfabrication using single-photon-absorbed polymerization. Appl Phys Lett 76(19):2656–2658. https://doi.org/10.1063/1.126742ADSCrossRefGoogle Scholar
- Maruo S, Ikuta K (2002) Submicron stereolithography for the production of freely movable mechanisms using single-photon polymerization. Sensors Actuat A-Phys 100(1):70–76. https://doi.org/10.1016/S0924-4247(02)00043-2CrossRefGoogle Scholar
- Maruo S, Inoue H (2006) Optically driven micropump produced by three-dimensional two-photon microfabrication. Appl Phys Lett 89(14):144101. https://doi.org/10.1063/1.2358820ADSCrossRefGoogle Scholar
- Maruo S, Saeki T (2008) Femtosecond laser direct writing of metallic microstructures by photoreduction of silver nitrate in a polymer matrix. Opt Express 16(2):1174–1179. https://doi.org/10.1364/OE.16.001174ADSCrossRefGoogle Scholar
- Maruo S, Nakamura O, Kawata S (1997) Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt Lett 22(2):132–134. https://doi.org/10.1364/OL.22.000132ADSCrossRefGoogle Scholar
- Maruo S, Ikuta K, Korogi H (2003) Submicron manipulation tools driven by light in a liquid. Appl Phys Lett 82(1):133–135. https://doi.org/10.1063/1.1533853ADSCrossRefGoogle Scholar
- Maruo S, Hasegawa T, Yoshimura N (2009a) Single-anchor support and supercritical CO 2 drying enable high-precision microfabrication of three-dimensional structures. Opt Express 17(23):20945–20951. https://doi.org/10.1364/OE.17.020945ADSCrossRefGoogle Scholar
- Maruo S, Hasegawa T, Yoshimura N (2009b) Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding. Jpn J Appl Phys 48(6S):06FH05. https://doi.org/10.1143/JJAP.48.06FH05CrossRefGoogle Scholar
- Mayer F, Richter S, Westhauser J et al (2019) Multimaterial 3D laser microprinting using an integrated microfluidic system. Sci Adv 5(2):eaau9160. https://doi.org/10.1126/sciadv.aau9160ADSCrossRefGoogle Scholar
- Mobaraki M, Ghaffari M, Yazdanpanah A et al (2020) Bioinks and bioprinting: A focused review. Bioprinting 18:e00080. https://doi.org/10.1016/j.bprint.2020.e00080
- Momeni F, Liu X, Ni J (2017) A review of 4D printing. Mater Design 122:42–79. https://doi.org/10.1016/j.matdes.2017.02.068
- Mondschein RJ, Kanitkar A, Williams CB et al (2017) Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds. Biomaterials 140:170–188. https://doi.org/10.1016/j.biomaterials.2017.06.005CrossRefGoogle Scholar
- Moser H, Rockstuhl C (2012) 3D THz metamaterials from micro/nanomanufacturing. Laser Photon Rev 6:219–244. https://doi.org/10.1002/lpor.201000019
- Mueller P, Thiel M, Wegener M (2014) 3D direct laser writing using a 405 nm diode laser. Opt Lett 39(24):6847–6850. https://doi.org/10.1364/OL.39.006847ADSCrossRefGoogle Scholar
- Obata K, El-Tamer A, Koch L et al (2013) High-aspect 3D two-photon polymerization structuring with widened objective working range (WOW-2PP). Light: Sci Appl 2(12):e116–e116. https://doi.org/10.1038/lsa.2013.72CrossRefGoogle Scholar
- Stampfl J, Liska R, Ovsianikov A (eds) (2016) Multiphoton lithography: techniques, materials, and applications. Wiley, New Jersey, WeinheimGoogle Scholar
- Thiel M, Fischer J, Von Freymann G et al (2010) Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97(22):221102. https://doi.org/10.1063/1.3521464ADSCrossRefGoogle Scholar
- Thiele S, Arzenbacher K, Gissibl T et al (2017) 3D-printed eagle eye: Compound microlens system for foveated imaging. Sci Adv 3(2):e1602655. https://doi.org/10.1126/sciadv.1602655
- Tumbleston JR, Shirvanyants D, Ermoshkin N et al (2015) Continuous liquid interface production of 3D objects. Science 347(6228):1349–1352. https://doi.org/10.1126/science.aaa2397
- Varadan VK, Jiang X, Varadan VV (eds) (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley, New Jersey, ChichesterGoogle Scholar
- Waller EH, von Freymann G (2018) From photoinduced electron transfer to 3D metal microstructures via direct laser writing. Nanophotonics 7(7):1259–1277. https://doi.org/10.1515/nanoph-2017-0134CrossRefGoogle Scholar
- Waller EH, Dix S, Gutsche J et al (2019) Functional metallic microcomponents via liquid-phase multiphoton direct laser writing: a review. Micromachines 10(12):827. https://doi.org/10.3390/mi10120827CrossRefGoogle Scholar
- Wang X, Cui K, Xuan Q et al (2019) Blue laser projection printing of conductive complex 2D and 3D metallic structures from photosensitive precursors. ACS Appl Mater Interfaces 11(24):21668–21674. https://doi.org/10.1021/acsami.9b02818CrossRefGoogle Scholar
- Zhou X, Hou Y, Lin J (2015) A review on the processing accuracy of two-photon polymerization. AIP Adv 5(3):030701. https://doi.org/10.1063/1.4916886ADSCrossRefGoogle Scholar