Skip to main content

Properties and Growth of Semiconductors

  • Reference work entry
  • First Online:
Semiconductor Physics
  • 7150 Accesses

Abstract

Semiconductor physics and devices have emerged from early studies on the conductivity of metal sulfides in the nineteenth century and experienced a strong progress since the middle of the twentieth century. This introductive chapter briefly highlights a couple of historic milestones and illustrates some general properties of semiconductors. Then the fabrication of semiconductors is described, pointing out the driving force of crystal growth, thermodynamics, and kinetics of nucleation and the occurrence of different growth modes. Various methods for growing bulk single crystals from the liquid and the vapor phase are introduced, and the techniques of liquid-phase epitaxy, molecular-beam epitaxy, and metalorganic vapor-phase epitaxy for the fabrication of thin layers and sharp interfaces are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 729.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The word itself was rediscovered at this time. It was actually used much earlier (Ebert1789) in approximately the correct context, and then again 62 years later by Bromme (1851). However, even after its more recent introduction, serious doubts were voiced as to whether even today’s most prominent semiconductor, silicon, would not better be described as a metal (Wilson1931).

  2. 2.

    This age was also termed the silicon age (Queisser 1985), in reference to the material now most widely used for semiconducting devices. Despite the great abundance in the earth’s crust (27.5% surpassed only by oxygen with 50.5%, and followed by aluminum with 7.3% and iron with 3.4%), and its dominance as the material of choice in the semiconductor industry, other semiconductor materials (crystalline or amorphous) are now being identified which may show even greater potential in the future. The global semiconductor industry with a $304 billion market in 2010 (source: KPMG report, ~$321 billion in 2012) is a key driver for economic growth, with an annual (long-term) average growth on the order of 13%.

  3. 3.

    The resistance is used here rather than the material resistivity because of the inhomogeneity of the electronic transport through most of the devices.

  4. 4.

    G is used instead of U, because control of temperature T and pressure P is more convenient than that of the parameters entropy S and volume V.

  5. 5.

    The number of coexisting phases is specified by Gibbs phase rule.

  6. 6.

    The phenomenon should not be confused with the size effect of melting-point depression in nanoscale materials that originates from a large surface-to-volume ratio.

  7. 7.

    After completion of a step, a new kink must nucleate at the step for advancement, and after completion of an entire layer, a new (two-dimensional) nucleus with a step at its perimeter must be created. Particularly, the latter leads to a slow growth rate of flat surfaces.

  8. 8.

    A screw dislocation hitting a surface creates a steadily reproduced kink site at its core, enabling a spiral growth around the core that is much faster than growth on a planar surface. Under suitable conditions, a fine needle may form with an axial screw-dislocation line.

  9. 9.

    This feature is different from the related method of Kyropoulos (1926,1930), where crystallization proceeds by slowly cooling the melt, and the crystal grows into the melt.

  10. 10.

    The differentiation between physical and chemical process is often not well defined, and CVT is also used for closed systems.

  11. 11.

    Organic materials interesting for semiconductor applications are treated in Sect. 1.5 in chapter “The Structure of Semiconductors.”

  12. 12.

    For example, in MBE of GaAs, the sticking coefficient of As2,\( {s}_{{\mathrm{As}}_2} \), increases linearly with the (independent) Ga adsorption rate and reaches unity when flux(Ga) = 2 × flux(As2).

  13. 13.

    Similar to MBE

  14. 14.

    The difference in the maximum growth rates in Fig. 15 originates from effects of the reactor geometry.

References

  • Adams WG, Day RE (1876) The action of light on selenium. Proc R Soc (Lond) 25:113

    Article  Google Scholar 

  • Arthur JR Jr (1968) Interaction of Ga and As2 molecular beams with GaAs surfaces. J Appl Phys 39:4032

    Article  ADS  Google Scholar 

  • Asahi T, Kainosho K, Kohiro K, Noda A, Sato K, Oda O (2003) Chapter 15: Growth of III-V and II-VI single crystals. In: Scheel HJ, Fukuda T (eds) Crystal growth technology. Wiley, Chichester

    Google Scholar 

  • Astles MG (1990) Liquid-phase epitaxial growth of III-V compound semiconductor materials and their device applications. Adam Hilger, Bristol

    Google Scholar 

  • Ayers JE (2007) Heteroepitaxy of semiconductors: theory, growth, and characterization. CRC, Boca Raton

    Book  Google Scholar 

  • Bell Labs (1947) see: Bo Lojek (2007) History of semiconductor engineering. Springer, Berlin

    Google Scholar 

  • Bergmann L (1931) Über eine neue Selen-Sperrschicht Photozelle. Phys Z 32:286 (On novel selenium-junction photo cells, in German)

    Google Scholar 

  • Bergmann L (1934) Phys Z 35:450

    Google Scholar 

  • Braun F (1874) Über die Stromleitung durch Schwefelmetalle. Ann Phys Chem 153:556 (On the current conduction in sulfur metals, in German)

    Google Scholar 

  • Brice JC (1986) Crystal growth processes. Halstead Press, New York

    Google Scholar 

  • Bridgman PW (1923) The compressibility of thirty metals as a function of pressure and temperature. Proc Am Acad Arts Sci (Boston) 58:165; Ibid. 60:303(1925)

    Google Scholar 

  • Bromme T (1851) Atlas der Physik der Welt. Krais & Hoffmann, Stuttgart (Physics atlas of the world, in German)

    Google Scholar 

  • Buckley HE (1951) Crystal growth. Wiley, New York

    Google Scholar 

  • Capper P, Mauk M (2007) Liquid phase epitaxy of electronic, optical and optoelectronic materials. Wiley, Chichester

    Book  Google Scholar 

  • Cho AY (1971) Film deposition by molecular-beam techniques. J Vac Sci Technol 8:S31

    Article  ADS  Google Scholar 

  • Czochralski J (1918) Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle. Z Phys Chemie 92:219 (New method for measuring the crystallization speed of metals, in German)

    Google Scholar 

  • Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) (2010) Springer handbook of crystal growth. Springer, New York

    Google Scholar 

  • Ebert JJ (1789) Unterweisung in den Anfangsgründen der Naturlehre. Chr. Gottlieb Hertel, Leipzig (Briefing in the elements of natural sciences, in German)

    Google Scholar 

  • Faraday M (1833) Experimental researches in electricity, series IV. Bernard Quaritch, London, p 433

    Google Scholar 

  • Gault WA, Monberg EM, Clemans JE (1986) A novel application of the vertical gradient freeze method to the growth of high quality III–V crystals. J Cryst Growth 74:491

    Article  ADS  Google Scholar 

  • Gibbs JW (1874) On the equilibrium of heterogeneous substances. Trans Conn Acad Arts Sci 3:108–248, 343–524, (1874–1878). Reproduced in both The Scientific Papers (1906), pp 55–353 and The Collected Works of J. Willard Gibbs, vol 2, Longmans, Green and Co., New York (1928), p. 267

    Google Scholar 

  • Giess EA, Ghez R (1975) Liquid-phase epitaxy. In: Matthews JW (ed) Epitaxial growth part B. Academic Press, New York, pp 183–213

    Chapter  Google Scholar 

  • Goodman CHL (1978) Crystal growth: theory and techniques. Plenum Press, New York

    Book  Google Scholar 

  • Grondahl LO (1926/1932) see: note on the discovery of the photoelectric effect in a copper-oxide rectifier. Phys Rev 40:635

    Google Scholar 

  • Günther KG (1958) Aufdampfschichten aus halbleitenden III-V-Verbindungen. Z Naturforschg 13a:1081 (Vapor deposition of semiconducting III-V compound layers, in German)

    ADS  Google Scholar 

  • Hermann MA, Richter W, Sitter H (2004) Epitaxy. Springer, Berlin

    Book  Google Scholar 

  • Hittorf JW (1851) Über das elektrische Leitvermögen des Schwefelsilbers und des Halbschwefelkupfers. Ann Phys Lpz 84:1 (On the electric conductivity of sulfur silver and semi-sulfur copper, in German)

    Google Scholar 

  • Holden A, Morrison PS (1982) Crystals and crystal growing. MIT Press, Cambridge, MA

    Google Scholar 

  • Hurle DTJ (1994) Handbook of crystal growth vol. 2a, bulk crystal growth, basic techniques. North Holland, Amsterdam

    Google Scholar 

  • Intel (2011) image accessible at http://www.techpowerup.com/reviews/Intel/Core_i5_2500K_GPU/

  • Jensen KF (1994) Transport phenomena in vapor phase epitaxy reactors. In: Hurle DRT (ed) Handbook of crystal growth. Elsevier, Amsterdam, pp 541–599

    Google Scholar 

  • Jones AC, O’Brien P (1997) CVD of compound semiconductors. VCH, Weinheim

    Book  Google Scholar 

  • Joyce BA, Vvedenski DD, Foxon CT (1994) Growth mechanisms in MBE and CBE of III-V compounds. In: Mahajan S (ed) Handbook on semiconductors. Elsevier, Amsterdam

    Google Scholar 

  • Kloc C, Siegrist T, Pflaum J (2010) Growth of single-crystal organic semiconductors. In: Dhanaraj G, Byrappa K, Prasad V, Dudley M (eds) Springer handbook of crystal growth. Springer, New York

    Google Scholar 

  • Königsberger T, Weiss T (1911) Über die thermoelektrischen Effekte (Thermokräfte, Thomsonwärme) und die Wärmeleitung in einigen Elementen und Verbindungen und über die experimentelle Prüfung der Elektronentheorien. Ann Phys 35:1. (On the thermoelectrical effects and heat conductivity in some elements and compounds and on the experimental examination of the electron theory, in German)

    Google Scholar 

  • KPMG report (2012) accessible at http://www.kpmg.com/eu/en/about/pages/annual-report.aspx

  • Kyropoulos S (1926) Ein Verfahren zur Herstellung großer Kristalle. Z Anorg Allg Chemie 154:308 (A method for the fabrication of large crystals, in German)

    Article  Google Scholar 

  • Kyropoulos S (1930) Dielektrizitätskonstanten regulärer Kristalle. Z Phys 63:849 (Dielectric constants of normal crystals, in German)

    Article  ADS  Google Scholar 

  • Laudise RA (1970) The growth of single crystals. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Manasevit HM, Simpson WI (1968) The use of metal-organics in the preparation of semiconductor materials on insulating substrates: I. Epitaxial III-V gallium compounds. J Electrochem Soc 12:66C

    Google Scholar 

  • Manasevit HM (1972) The use of metalorganics in the preparation of semiconductor materials: Growth on insulating substrates. J Crystal Growth 13/14:306

    Article  ADS  Google Scholar 

  • Markov IV (2003) Crystal growth for beginners, 2nd edn. World Scientific, Singapore

    Book  Google Scholar 

  • Metz EAP, Miller RC, Mazelsky R (1962) A technique for pulling single crystals of volatile materials. J Appl Phys 33:2016

    Article  ADS  Google Scholar 

  • Miederer WG, Ziegler, Dötzer R (1962) Verfahren zum tiegelfreien Herstellen von Galliumarsenidstäben aus Galliumalkylen und Arsenverbindungen bei niedrigen Temperaturen. German Patent 1,176,102, filed 25.9.1962; and: Method of crucible-free production of gallium arsenide rods from alkyl galliums and arsenic compounds at low temperatures. US Patent 3,226,270, filed 24.9.1963

    Google Scholar 

  • Miller RJ, Bachmann CH (1958) Production of cadmium sulfide crystals by coevaporation in a vacuum. J Appl Phys 29:1277

    Article  ADS  Google Scholar 

  • Mooser E, Pearson WB (1956) The chemical bond in semiconductors. J Electron 1:629

    Google Scholar 

  • Mountziaris TJ, Jensen KF (1991) Gas-phase and surface reaction mechanisms in MOCVD of GaAs with trimethyl-gallium and arsine. J Electrochem Soc 138:2426

    Article  Google Scholar 

  • Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450

    Article  ADS  Google Scholar 

  • Pamplin B (1980) Crystal growth, 2nd edn. Pergamon, New York

    Google Scholar 

  • Parker EHC (ed) (1985) The technology and physics of molecular beam epitaxy. Plenum Press, New York

    Google Scholar 

  • Pohl UW (2013) Epitaxy of semiconductors. Springer, Berlin

    Book  Google Scholar 

  • Queisser HJ (1985) Kristallene Krisen. Piper, München English: The Conquest of the Microchip

    Google Scholar 

  • Reep DH, Ghandhi SK (1983) Deposition of GaAs epitaxial layers by organometallic CVD. J Electrochem Soc 130:675

    Article  Google Scholar 

  • Schuster A (1874) On unilateral conductivity. Philos Mag 48:251

    Article  Google Scholar 

  • Seebeck TJ (1822) Magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz. Abhandl Deut Akad Wiss. Berlin, p 265. (Magnetic polarization of metals and ore by temperature difference, in German)

    Google Scholar 

  • Small MB, Giess EA, Ghez R (1994) Liquid-phase epitaxy. In: Hurle DTJ (ed) Handbook of crystal growth, vol 3. Elsevier, Amsterdam, pp 223–253

    Google Scholar 

  • Smith W (1873) Effect of light on selenium during the passage of an electric current. Nature 7:303

    Article  Google Scholar 

  • Stringfellow GB (1999) Organometallic vapor-phase epitaxy, 2nd edn. Academic Press, New York

    Google Scholar 

  • Sze SM, Ng KK (2007) Physics of semiconductor devices, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Venables JA, Spiller GDT, Hanbrücken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399

    Article  ADS  Google Scholar 

  • Verneuil AV (1902) Production artificielle du rubis par fusion (Artificial production of ruby by fusion, in French) C R Acad Sci Paris C 135:791; La synthese du rubis (Synthesis of ruby, in French) Ann Chim et Phys (Paris) 3:20 (1904)

    Google Scholar 

  • Volmer M (1939) Kinetik der Phasenbildung. Theodor Steinkopf, Dresden (Kinetics of phase formation, in German)

    Google Scholar 

  • Volmer M, Weber A (1926) Tröpfchenbildung in Dämpfen. Z Phys Chem 119:227 (Formation of droplets in vapor, in German)

    Google Scholar 

  • Wanklyn BMR (1974) Practical aspects of flux growth by spontaneous nucleation. In: Pamplin BR (ed) Crystal growth, vol 1. Pergamon, Oxford, pp 217–288

    Google Scholar 

  • Wilson AH (1931) The theory of electronic semi-conductors. Proc R Soc (Lond) Ser A 133:458

    Article  ADS  MATH  Google Scholar 

  • Wulff G (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Kristallflächen, Z. Kristallographie 34:449 (On the question of growth velocity and the decomposition of crystal faces, in German)

    Google Scholar 

  • Young T (1805) An essay on the cohesion of fluids. Phil Trans R Soc Lond 95:65

    Article  Google Scholar 

  • Zachariasen WH (1932) The atomic arrangement in glass. J Am Chem Soc 54:3841

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Böer, K.W., Pohl, U.W. (2018). Properties and Growth of Semiconductors. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-69150-3_1

Download citation

Publish with us

Policies and ethics