Advertisement

Small Vessel Disease

Imaging and Clinical Aspects
  • Hans Rolf JägerEmail author
  • Beatriz Gomez-Anson
Reference work entry

Abstract

Pathological processes affecting small arteries, arterioles, capillaries, and small veins of the brain are collectively referred to as cerebral “small vessel disease” (SVD). The size of the affected vessels ranges typically from a few microns to approximately 2 mm. A number of pathological and pathophysiological processes, some of which are still incompletely understood, can lead to cerebral SVD. Pantoni (2010) proposed a classification of SVD, which will be followed in this chapter. The most frequent clinical manifestations of cerebral SDV are ischemic or hemorrhagic stroke and cognitive decline. Clinical neuroradiology plays an important role in the differential diagnosis of SVD. In this chapter we will discuss clinical aspects, pertinent radiological techniques, and typical imaging features of the various subtypes of cerebral SVD.

Keywords

Small vessel disease Cerebral amyloid angiopathy Small vessel vasculitis 

Abbreviations

ADC

Apparent diffusion coefficient

AIREN

Association Internationale pour la Recherche et l’Enseignement en Neurosciences

ANCA

Antineutrophil cytoplasmic antibodies

APOE

Apolipoprotein E

ASL

Arterial spin labeling

BBB

Blood-brain barrier

BOMBS

Brain Observer MicroBleed Scale

CAA

Cerebral amyloid angiopathy

CAAri

Cerebral amyloid angiopathy-related inflammation

CADASIL

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy

CARASAL

Cathepsin A-related arteriopathy with strokes and leukoencephalopathy

CARASIL

Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy

CD

Cushing disease

CMB

Cerebral microbleed

CNS

Central nervous system

cSS

Cortical superficial siderosis

CT

Computed tomography

DCE

Dynamic contrast enhanced

DPA

Deep perforating artery

DSC

Dynamic susceptibility contrast

DTI

Diffusion tensor imaging

DWI

Diffusion-weighted imaging

FLAIR

Fluid-attenuated inversion recovery

Gad

Gadolinium

GOM

Granular osmiophilic material

GPA

Granulomatosis with polyangiitis

GRE

Gradient-recalled echo

HANAC

Hereditary angiopathy with nephropathy, aneurysms, and muscle cramps

HERNS

Hereditary endotheliopathy, retinopathy, nephropathy, and stroke

HIV

Human immunodeficiency virus

HZV

Herpes zoster virus

IgA

Immunoglobulin A

IPH

Intraparenchymal hemorrhage

MARS

Microbleed anatomical rating scale

MCA

Middle cerebral artery

MELAS

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MRA

Magnetic resonance angiography

MRI

Magnetic resonance imaging

MTT

Mean transit time

NECT

Non-enhanced CT

NINDS

National Institute of Neurological Disorders and Stroke

NOACS

Novel oral anticoagulants

PET

Positron emission tomography

PiB

Pittsburgh compound B

rCBF

Regional cerebral blood flow

rCBV

Regional cerebral blood volume

SLE

Systemic lupus erythematosus

STRIVE

STandards for Reporting Vascular changes on nEuroimaging

SVD

Small vessel disease

SWI

Susceptibility-weighted imaging

TFNE

Transient focal neurological episodes

TIA

Transient ischemic attack

TOF

Time of flight

WMD

White matter disease

WMH

White matter hyperintensity

WML

White matter lesion

References

  1. Carmona-Iragui M, Fernández-Arcos A, Alcolea D, Piazza F, Morenas-Rodriguez E, Antón-Aguirre S, Sala I, Clarimon J, Dols-Icardo O, Camacho V, Sampedro F, Munuera J, Nuñez-Marin F, Lleó A, Fortea J, Gómez-Ansón B, Blesa R. Cerebrospinal Fluid Anti-Amyloid-β Autoantibodies and Amyloid PET in Cerebral Amyloid Angiopathy-Related Inflammation. J Alzheimers Dis 2016;50(1):1–7.Google Scholar
  2. Charidimou A, Linn J, Vernooij MW, Opherk C, Akoudad S, Baron JC, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138(Pt 8):2126–39.PubMedGoogle Scholar
  3. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140(7):1829–50.PubMedPubMedCentralGoogle Scholar
  4. Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria. Stroke. 2018;49(2):491–7.PubMedPubMedCentralGoogle Scholar
  5. Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update NeuroImage: Clinical 2017;15: 247–263Google Scholar
  6. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.PubMedGoogle Scholar
  7. Rodrigues MA, Samarasekera N, Lerpiniere C Humphreys C, McCarron MO, White PM, Nicoll JAR, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 2018;17(3):232–40.PubMedPubMedCentralGoogle Scholar
  8. Santos A, Resmini E, Gómez-Ansón B, Crespo I, Granell E, Valassi E, et al. Cardiovascular risk and white matter lesions after endocrine control of Cushing’s syndrome. Eur J Endocrinol. 2015;173(6):765–75.PubMedGoogle Scholar
  9. Van den Boom R, Lesnik Oberstein SA, Ferrari MD, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages: 3rd–6th decades. Radiology. 2003;229:683–90.PubMedGoogle Scholar
  10. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013a;12(5):483–97.PubMedGoogle Scholar
  11. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al., STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013b;12(8):822–38.PubMedPubMedCentralGoogle Scholar
  12. Wilson D, Ambler G, Shakeshaft C, Brown MM, Charidimou A, Al-Shahi Salman R, et al. CROMIS-2 collaborators. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurol. 2018;17(6):539–47. (Erratum in: Lancet Neurol. 2018;17(7):578).Google Scholar

Further Reading

  1. Armulik A, Genove G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.PubMedGoogle Scholar
  2. Barnes AJ, Locke P, Scudder PR, Dormandy TL, Dormandy JA, Slack J. Is hyperviscosity a treatable component of diabetic microcirculatory disease? Lancet. 1977;2(8042):789–91.PubMedGoogle Scholar
  3. Charidimou A, Peeters PA, Jäger R, Fox Z, Vandermeeren Y, Laloux P, et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology. 2013;81(19):1666–73.PubMedPubMedCentralGoogle Scholar
  4. Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Int J Stroke. 2016;11(1):6–18.PubMedGoogle Scholar
  5. Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88(12):1157–64.PubMedPubMedCentralGoogle Scholar
  6. Charidimou A, Shoamanesh A, Al-Shahi Salman R, Cordonnier C, Perry LA, Sheth KN, et al. Cerebral amyloid angiopathy, cerebral microbleeds and implications for anticoagulation decisions: the need for a balanced approach. Int J Stroke. 2018;13(2):117–20.PubMedGoogle Scholar
  7. Choi Choi J. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy: a genetic cause of cerebral small vessels disease. J Clin Neurol. 2010;6(1):1–9.PubMedGoogle Scholar
  8. De Guio F, Reyes S, Vignaud A, Duering M, Ropele S, Duchesnay E, et al. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL. PLoS One. 2014;9(8):e106311.PubMedPubMedCentralGoogle Scholar
  9. Greenberg SM. Small vessels, big problems. N Engl J Med. 2006;354(14):1451–3.PubMedGoogle Scholar
  10. Haffner C, Vinters HV. CADASIL, CARASIL, CARASAL: the linguistic subtleties of cerebral small vessel disease. Neurology. 2016;87(17):1752–3.PubMedGoogle Scholar
  11. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral microbleeds: imaging and clinical significance. Radiology. 2018;287(1):11–28.PubMedGoogle Scholar
  12. Ihara M, Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke. 2016;47(2):554–60.PubMedGoogle Scholar
  13. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutation in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707–10.PubMedGoogle Scholar
  14. Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41(8):e513–8.PubMedGoogle Scholar
  15. Lee JS, Choi JC, Kang SY, Kang JH, Na HR, Park JK. Effects of lacunar infarctions on cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leucoencephalopathy. J Clin Neurol. 2011;7(4):210–4.PubMedPubMedCentralGoogle Scholar
  16. Lindenholz A, van der Kolk AG, Zwanenburg JM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology. 2018;286(1):12–28.PubMedGoogle Scholar
  17. Østergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. 2016;36(2):302–25.PubMedGoogle Scholar
  18. Plancher JMON, Hufnagel RB, Vagal A, Peariso K, Saal HM, Brodericka JP. Case of small vessel disease associated with COL4A1 mutations following trauma. Case Rep Neurol. 2015;7(2):142–7.PubMedPubMedCentralGoogle Scholar
  19. Rinnoci V, Nannucci S, Valenti R, Donnini I, Bianchi S, Pescini F, et al. Cerebral hemorrhages in CADASIL: report of four cases and a brief review. J Neurol Sci. 2013;330(1–2):45–51.PubMedGoogle Scholar
  20. Sato Y, Shibasaki J, Aida N, Hiiragi K, Kimura Y, Akahira-Azuma M, et al. Novel COL4A1 mutation in a fetus with early prenatal onset of schizencephaly. Hum Genome Var. 2018;5:4.PubMedPubMedCentralGoogle Scholar
  21. Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol. 2016;1(3):83–92.PubMedPubMedCentralGoogle Scholar
  22. Skehan SJ, Hutchinson M, MacErlaine DP. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy: MR findings. AJNR Am J Neuroradiol. 1995;16(10):2115–9.PubMedGoogle Scholar
  23. Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev. 1999;31(1):42–57.PubMedGoogle Scholar
  24. Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14(7):387–98.PubMedGoogle Scholar
  25. Wardlaw JM, Doubal FN, Valdes-Hernandez M, Wang X, Chappell FM, Shuler K, et al. Blood–brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke. 2013;44:525–7.PubMedGoogle Scholar
  26. Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71(4):470–7.PubMedPubMedCentralGoogle Scholar
  27. Wilson D, Charidimou A, Werring DJ. Advances in understanding spontaneous intracerebral hemorrhage: insights from neuroimaging. Expert Rev Neurother. 2014;14(6):661–78.PubMedGoogle Scholar
  28. Yamamoto Y, Ihara M, Tham C, Low RW, Slade JY, Moss T, et al. Neuropathological correlates of temporal white matter hyperintensities in CADASIL. Stroke. 2009;40(6):2004–11.PubMedPubMedCentralGoogle Scholar
  29. Zwanenburg JJM, van Osch MJP. Targeting cerebral small vessel disease with MRI. Stroke. 2017;48(11):3175–82.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery and University College Hospital (UCH)LondonUK
  2. 2.Hospital Santa Creu i Sant Pau, Universitat AutonomaBarcelonaSpain
  3. 3.Department of Brain, Repair and Rehabilitation, Neuroradiological Academic Unit, UCL Institute of NeurologyLondonUK
  4. 4.Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryLondonUK
  5. 5.Imaging Department, University College London HospitalsLondonUK

Section editors and affiliations

  • Rüdiger von Kummer
    • 1
  1. 1.Institut und Poliklinik für NeuroradiologieUniversitätsklinikum Carl Gustav Carus, DresdenDresdenGermany

Personalised recommendations