Small Vessel Disease

Imaging and Clinical Aspects
  • Hans Rolf JägerEmail author
  • Beatriz Gomez-Anson
Reference work entry


Pathological processes affecting small arteries, arterioles, capillaries, and small veins of the brain are collectively referred to as cerebral “small vessel disease” (SVD). The size of the affected vessels ranges typically from a few microns to approximately 2 mm. A number of pathological and pathophysiological processes, some of which are still incompletely understood, can lead to cerebral SVD. Pantoni (2010) proposed a classification of SVD, which will be followed in this chapter. The most frequent clinical manifestations of cerebral SDV are ischemic or hemorrhagic stroke and cognitive decline. Clinical neuroradiology plays an important role in the differential diagnosis of SVD. In this chapter we will discuss clinical aspects, pertinent radiological techniques, and typical imaging features of the various subtypes of cerebral SVD.


Small vessel disease Cerebral amyloid angiopathy Small vessel vasculitis 



Apparent diffusion coefficient


Association Internationale pour la Recherche et l’Enseignement en Neurosciences


Antineutrophil cytoplasmic antibodies


Apolipoprotein E


Arterial spin labeling


Blood-brain barrier


Brain Observer MicroBleed Scale


Cerebral amyloid angiopathy


Cerebral amyloid angiopathy-related inflammation


Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy


Cathepsin A-related arteriopathy with strokes and leukoencephalopathy


Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy


Cushing disease


Cerebral microbleed


Central nervous system


Cortical superficial siderosis


Computed tomography


Dynamic contrast enhanced


Deep perforating artery


Dynamic susceptibility contrast


Diffusion tensor imaging


Diffusion-weighted imaging


Fluid-attenuated inversion recovery




Granular osmiophilic material


Granulomatosis with polyangiitis


Gradient-recalled echo


Hereditary angiopathy with nephropathy, aneurysms, and muscle cramps


Hereditary endotheliopathy, retinopathy, nephropathy, and stroke


Human immunodeficiency virus


Herpes zoster virus


Immunoglobulin A


Intraparenchymal hemorrhage


Microbleed anatomical rating scale


Middle cerebral artery


Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes


Magnetic resonance angiography


Magnetic resonance imaging


Mean transit time


Non-enhanced CT


National Institute of Neurological Disorders and Stroke


Novel oral anticoagulants


Positron emission tomography


Pittsburgh compound B


Regional cerebral blood flow


Regional cerebral blood volume


Systemic lupus erythematosus


STandards for Reporting Vascular changes on nEuroimaging


Small vessel disease


Susceptibility-weighted imaging


Transient focal neurological episodes


Transient ischemic attack


Time of flight


White matter disease


White matter hyperintensity


White matter lesion


  1. Carmona-Iragui M, Fernández-Arcos A, Alcolea D, Piazza F, Morenas-Rodriguez E, Antón-Aguirre S, Sala I, Clarimon J, Dols-Icardo O, Camacho V, Sampedro F, Munuera J, Nuñez-Marin F, Lleó A, Fortea J, Gómez-Ansón B, Blesa R. Cerebrospinal Fluid Anti-Amyloid-β Autoantibodies and Amyloid PET in Cerebral Amyloid Angiopathy-Related Inflammation. J Alzheimers Dis 2016;50(1):1–7.CrossRefGoogle Scholar
  2. Charidimou A, Linn J, Vernooij MW, Opherk C, Akoudad S, Baron JC, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions. Brain. 2015;138(Pt 8):2126–39.PubMedCrossRefGoogle Scholar
  3. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ, Frosch MP, et al. Emerging concepts in sporadic cerebral amyloid angiopathy. Brain. 2017;140(7):1829–50.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Greenberg SM, Charidimou A. Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria. Stroke. 2018;49(2):491–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Farid K, Charidimou A, Baron JC. Amyloid positron emission tomography in sporadic cerebral amyloid angiopathy: A systematic critical update NeuroImage: Clinical 2017;15: 247–263CrossRefGoogle Scholar
  6. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010;9(7):689–701.PubMedCrossRefGoogle Scholar
  7. Rodrigues MA, Samarasekera N, Lerpiniere C Humphreys C, McCarron MO, White PM, Nicoll JAR, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study. Lancet Neurol. 2018;17(3):232–40.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Santos A, Resmini E, Gómez-Ansón B, Crespo I, Granell E, Valassi E, et al. Cardiovascular risk and white matter lesions after endocrine control of Cushing’s syndrome. Eur J Endocrinol. 2015;173(6):765–75.PubMedCrossRefGoogle Scholar
  9. Van den Boom R, Lesnik Oberstein SA, Ferrari MD, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: MR imaging findings at different ages: 3rd–6th decades. Radiology. 2003;229:683–90.PubMedCrossRefGoogle Scholar
  10. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013a;12(5):483–97.PubMedCrossRefGoogle Scholar
  11. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al., STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013b;12(8):822–38.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Wilson D, Ambler G, Shakeshaft C, Brown MM, Charidimou A, Al-Shahi Salman R, et al. CROMIS-2 collaborators. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2): a multicentre observational cohort study. Lancet Neurol. 2018;17(6):539–47. (Erratum in: Lancet Neurol. 2018;17(7):578).Google Scholar

Further Reading

  1. Armulik A, Genove G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, et al. Pericytes regulate the blood–brain barrier. Nature. 2010;468(7323):557–61.PubMedCrossRefGoogle Scholar
  2. Barnes AJ, Locke P, Scudder PR, Dormandy TL, Dormandy JA, Slack J. Is hyperviscosity a treatable component of diabetic microcirculatory disease? Lancet. 1977;2(8042):789–91.PubMedCrossRefGoogle Scholar
  3. Charidimou A, Peeters PA, Jäger R, Fox Z, Vandermeeren Y, Laloux P, et al. Cortical superficial siderosis and intracerebral hemorrhage risk in cerebral amyloid angiopathy. Neurology. 2013;81(19):1666–73.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Charidimou A, Pantoni L, Love S. The concept of sporadic cerebral small vessel disease: a road map on key definitions and current concepts. Int J Stroke. 2016;11(1):6–18.PubMedCrossRefGoogle Scholar
  5. Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88(12):1157–64.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Charidimou A, Shoamanesh A, Al-Shahi Salman R, Cordonnier C, Perry LA, Sheth KN, et al. Cerebral amyloid angiopathy, cerebral microbleeds and implications for anticoagulation decisions: the need for a balanced approach. Int J Stroke. 2018;13(2):117–20.PubMedCrossRefGoogle Scholar
  7. Choi Choi J. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy: a genetic cause of cerebral small vessels disease. J Clin Neurol. 2010;6(1):1–9.PubMedCrossRefGoogle Scholar
  8. De Guio F, Reyes S, Vignaud A, Duering M, Ropele S, Duchesnay E, et al. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL. PLoS One. 2014;9(8):e106311.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Greenberg SM. Small vessels, big problems. N Engl J Med. 2006;354(14):1451–3.PubMedCrossRefGoogle Scholar
  10. Haffner C, Vinters HV. CADASIL, CARASIL, CARASAL: the linguistic subtleties of cerebral small vessel disease. Neurology. 2016;87(17):1752–3.PubMedCrossRefGoogle Scholar
  11. Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral microbleeds: imaging and clinical significance. Radiology. 2018;287(1):11–28.PubMedCrossRefGoogle Scholar
  12. Ihara M, Yamamoto Y. Emerging evidence for pathogenesis of sporadic cerebral small vessel disease. Stroke. 2016;47(2):554–60.PubMedCrossRefGoogle Scholar
  13. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutation in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707–10.PubMedCrossRefGoogle Scholar
  14. Lanfranconi S, Markus HS. COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke. 2010;41(8):e513–8.PubMedCrossRefGoogle Scholar
  15. Lee JS, Choi JC, Kang SY, Kang JH, Na HR, Park JK. Effects of lacunar infarctions on cognitive impairment in patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leucoencephalopathy. J Clin Neurol. 2011;7(4):210–4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Lindenholz A, van der Kolk AG, Zwanenburg JM, Hendrikse J. The use and pitfalls of intracranial vessel wall imaging: how we do it. Radiology. 2018;286(1):12–28.PubMedCrossRefGoogle Scholar
  17. Østergaard L, Engedal TS, Moreton F, Hansen MB, Wardlaw JM, Dalkara T, et al. Cerebral small vessel disease: capillary pathways to stroke and cognitive decline. J Cereb Blood Flow Metab. 2016;36(2):302–25.PubMedCrossRefGoogle Scholar
  18. Plancher JMON, Hufnagel RB, Vagal A, Peariso K, Saal HM, Brodericka JP. Case of small vessel disease associated with COL4A1 mutations following trauma. Case Rep Neurol. 2015;7(2):142–7.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Rinnoci V, Nannucci S, Valenti R, Donnini I, Bianchi S, Pescini F, et al. Cerebral hemorrhages in CADASIL: report of four cases and a brief review. J Neurol Sci. 2013;330(1–2):45–51.PubMedCrossRefGoogle Scholar
  20. Sato Y, Shibasaki J, Aida N, Hiiragi K, Kimura Y, Akahira-Azuma M, et al. Novel COL4A1 mutation in a fetus with early prenatal onset of schizencephaly. Hum Genome Var. 2018;5:4.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol. 2016;1(3):83–92.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Skehan SJ, Hutchinson M, MacErlaine DP. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy: MR findings. AJNR Am J Neuroradiol. 1995;16(10):2115–9.PubMedGoogle Scholar
  23. Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev. 1999;31(1):42–57.PubMedCrossRefGoogle Scholar
  24. Ter Telgte A, van Leijsen EMC, Wiegertjes K, Klijn CJM, Tuladhar AM, de Leeuw FE. Cerebral small vessel disease: from a focal to a global perspective. Nat Rev Neurol. 2018;14(7):387–98.PubMedCrossRefGoogle Scholar
  25. Wardlaw JM, Doubal FN, Valdes-Hernandez M, Wang X, Chappell FM, Shuler K, et al. Blood–brain barrier permeability and long-term clinical and imaging outcomes in cerebral small vessel disease. Stroke. 2013;44:525–7.PubMedCrossRefGoogle Scholar
  26. Weng YC, Sonni A, Labelle-Dumais C, de Leau M, Kauffman WB, Jeanne M, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol. 2012;71(4):470–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Wilson D, Charidimou A, Werring DJ. Advances in understanding spontaneous intracerebral hemorrhage: insights from neuroimaging. Expert Rev Neurother. 2014;14(6):661–78.PubMedCrossRefGoogle Scholar
  28. Yamamoto Y, Ihara M, Tham C, Low RW, Slade JY, Moss T, et al. Neuropathological correlates of temporal white matter hyperintensities in CADASIL. Stroke. 2009;40(6):2004–11.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zwanenburg JJM, van Osch MJP. Targeting cerebral small vessel disease with MRI. Stroke. 2017;48(11):3175–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery and University College Hospital (UCH)LondonUK
  2. 2.Hospital Santa Creu i Sant Pau, Universitat AutonomaBarcelonaSpain
  3. 3.Department of Brain, Repair and Rehabilitation, Neuroradiological Academic Unit, UCL Institute of NeurologyLondonUK
  4. 4.Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryLondonUK
  5. 5.Imaging Department, University College London HospitalsLondonUK

Section editors and affiliations

  • Rüdiger von Kummer
    • 1
  1. 1.Institut und Poliklinik für NeuroradiologieUniversitätsklinikum Carl Gustav Carus, DresdenDresdenGermany

Personalised recommendations