Skip to main content

Photocatalytic Decontamination in Pharmaceutical Effluent Treatment

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

In recent years, due to the scarcity of fresh water, researchers are giving attention in wastewater treatment for removal of emerging contaminants especially pharmaceutical compounds. These compounds are found at trace levels. Such compounds have significant effects on all living elements in aquatic environment as well as whole ecosystem, human race, e.g., toxicity, resistance development for pathogenic bacteria, genotoxicity, and endocrine disruption, etc. There are several wastewater treatments available for both domestic as well as industrial wastewater; however, these wastewater treatments are unable to treat or separate out pharmaceutical compounds. Thus, researchers are paying attention in advanced oxidation process (AOP) using photocatalytic nanoparticle for treatment of pharmaceutical wastewater. This present chapter represents an in-depth review on photocatalytic decontamination of various pharmaceutical wastes as well as involvement of associated process parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59

    Google Scholar 

  2. Wintgens T, Salehi F, Hochstrat R, Melin T (2008) Emerging contaminants and treatment options in water recycling for indirect potable use. Water Sci Technol 57:99–107

    Google Scholar 

  3. Suarez S, Carballa M, Omil F, Lema JM (2008) How are pharmaceutical and personal care products (PPCPs) removed from urban waste waters. Rev Environ Sci Biotechnol 7:125–138

    Google Scholar 

  4. Carballa M, Omil F, Lema JM, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Google Scholar 

  5. Hirsch R, Ternes TA, Haberer K, Mehlich A, Ballwanz F, Kratz KL (1998) Determination of antibiotics in different water compartments via liquid chromatography–electrospray tandem mass spectrometry. J Chromatogr A 815:213–223

    Google Scholar 

  6. Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260

    Google Scholar 

  7. Kidd KA, Blanchfield PJ, Mills KH, Palace VP, Evans RE, Lazorchak JM, Flick RW (2007) Collapse of a fish population after exposure to a synthetic estrogen. Proc Natl Acad Sci U S A 104:8897–8901

    Google Scholar 

  8. Lange R, Hutchinson TH, Croudace CP, Siegmund F, Schweinfurth H, Hampe P, Panter GH, Sumpter JP (2001) Effects of the synthetic estrogen 17 alphaethinylestradiol on the life-cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem 20:1216–1227

    Google Scholar 

  9. Oaks JL, Gilbert M, Virani MZ, Watson RT, Meteyer CU, Rideout BA, Shivaprasad HL, Ahmed S, Chaudhry MJ, Arshad M, Mahmood S, Ali A, Khan AA (2004) Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427:630–633

    Google Scholar 

  10. Viessman W Jr, Hammer MJ (1998) Water supply and pollution control, 6th edn. Addison Wesley Longman, California

    Google Scholar 

  11. Padmanabhan PVA, Sreekumar KP, Thiyagarajan TK, Satpute RU, Bhanumurthy K, Sengupta P, Dey GK, Warrier KGK (2006) Nano-crystalline titanium dioxide formed by reactive plasma synthesis. Vacuum 80:11–12

    Google Scholar 

  12. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    Google Scholar 

  13. Yang H, Cheng H (2007) Controlling nitrite level in drinking water by chlorination and chloramination. Sep Purif Technol 56:392–396

    Google Scholar 

  14. Lu J, Zhang T, Ma J, Chen Z (2009) Evaluation of disinfection by-products formation during chlorination and chloramination of dissolved natural organic matter fractions isolated from a filtered river water. J Hazard Mater 162:140–145

    Google Scholar 

  15. Coleman HM, Marquis CP, Scott JA, Chin SS, Amal R (2005) Bactericidal effects of titanium dioxide-based photocatalysts. Chem Eng J 113:55–63

    Google Scholar 

  16. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Google Scholar 

  17. Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36:3855–3863

    Google Scholar 

  18. Hua W, Bennett ER, Letcher JR (2006) Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper, Detroit river, Ontario, Canada. Water Res 40:2259–2266

    Google Scholar 

  19. Thiruvenkatachari T, Vigneswaran S, Moon S (2008) A review on UV/TiO2 photocatalytic oxidation process. Korean J Chem Eng 25:64–72

    Google Scholar 

  20. Serpone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New York

    Google Scholar 

  21. Pichat P (2013) Photocatalysis and water purification: from fundamentals to recent applications. Wiley VCH, Weinheim

    Google Scholar 

  22. Teixeira S, Gurke R, Eckert H, Kühn K, Fauler J, Cuniberti G (2016) Photocatalytic degradation of pharmaceuticals present in conventional treated wastewater by nanoparticle suspensions. J Environ Chem Eng 4:287–292

    Google Scholar 

  23. Lazar M, Varghese S, Nair S (2012) Photocatalytic water treatment by titanium dioxide: recent updates. Catalysts 2:572–601

    Google Scholar 

  24. Fujishima A, Zhang X, Donald A (2008) Trykc, TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Google Scholar 

  25. Pan L, Liu X, Sun Z, Sun CQ (2013) Nanophotocatalysts via microwave-assisted solution-phase synthesis for efficient photocatalysis. J Mater Chem A 1:8299

    Google Scholar 

  26. Hassani A, Khataee A, Karacaa S, Fathinia M (2017) Degradation of mixture of three pharmaceuticals by photocatalytic ozonation in the presence of TiO2/montmorillonite nanocomposite: simultaneous determination and intermediates identification. J Environ Chem Eng 5:1964–1976

    Google Scholar 

  27. De Voogt P, Janex-Habibi ML, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59:39–46

    Google Scholar 

  28. Sayilkan F, Asiltürk M, Sener S, Erdemŏglu S, Erdemŏglu M, Sayilkan H (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Turk J Chem 31:211–221

    Google Scholar 

  29. Chen D, Zhu Q, Zhou F, Deng X, Li F (2012) Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite. J Hazard Mater 235–236:186–193

    Google Scholar 

  30. Khataee AR, Pons MN, Zahraa O (2009) Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J Hazard Mater 168:451–457

    Google Scholar 

  31. Anandan S, Yoon M (2003) Photocatalytic activities of the nano-sized TiO2-supported Y-zeolites. J Photochem Photobiol C: Photochem Rev 4:5–18

    Google Scholar 

  32. Chen H, Lee SW, Kim TH, Hur BY (2006) Photocatalytic decomposition of benzene with plasma sprayed TiO2-based coatings on foamed aluminium. J Eur Ceram Soc 26:2231–2239

    Google Scholar 

  33. Bouna L, Rhouta B, Amjoud M, Maury F, Lafont MC, Jada A, Senocq F, Daoudi L (2011) Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers. Appl Clay Sci 52:301–311

    Google Scholar 

  34. Regulska E, Karpińska J (2012) Photocatalytic degradation of olanzapine in aqueous and river waters suspension of titanium dioxide. Appl Catal B Environ 117–118:96–104

    Google Scholar 

  35. Serpone N, Artemev YM, Ryabchuk VK, Emeline AV, Horikoshi S (2017) Light-driven advanced oxidation processes in the disposal of emerging pharmaceutical contaminants in aqueous media: a brief review. Curr Opin Green Sustain Chem 6:18–33

    Google Scholar 

  36. Altman R, Bosch B, Brune K, Patrignani P, Young C (2015) Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs 75. https://doi.org/10.1007/s40265-015-0392-z

    Google Scholar 

  37. Rizzo L, Mericb S, Kassinosc D, Guidab M, Russob F, Belgiornoa V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43:979–988

    Google Scholar 

  38. Ahmed MM, Brienza M, Goetz V, Chiron S (2014) Solar photo-Fenton using peroxymonosulfate for organic micropollutants removal from domestic wastewater: comparison with heterogeneous TiO2 photocatalysis. Chemosphere 117:256–261

    Google Scholar 

  39. Oyama T, Otsu T, Hidano Y, Tsukamoto T, Serpone N, Hidaka H (2014) Remediation of aquatic environments contaminated with hydrophilic and lipophilic pharmaceuticals by TiO2-photoassisted ozonation. J Environ Chem Eng 2:84–89

    Google Scholar 

  40. Yargeau V, Leclair C (2008) Impact of operating conditions on decomposition of antibiotics during ozonation: a review. Ozone Sci Eng 30:175–188

    Google Scholar 

  41. Márquez G, Rodríguez EM, Beltrán FJ, Álvarez PM (2014) Solar photocatalytic ozonation of a mixture of pharmaceutical compounds in water. Chemosphere 113:71–78

    Google Scholar 

  42. Ganiyu SO, van Hullebusch ED, Cretin M, Esposito G, Oturan MA (2015) Coupling of membrane filtration and advanced oxidation processes for removal of pharmaceutical residues: a critical review. Sep Purif Technol 156(Part 3):891–914

    Google Scholar 

  43. Molinari R, Lavorato C, Argurio P (2017) Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal Today 281:144–164

    Google Scholar 

  44. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO for hydrogen production. Renew Sust Energ Rev 11:401–425

    Google Scholar 

  45. Lei Z-D, Wang J-J, Wang L, Yang X-Y, Xu G, Tang L (2016) Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J Hazard Mater 312:298–306

    Google Scholar 

  46. Hongbin Y, Shuo C, Xie Q, Huimin Z, Yaobin Z (2008) Fabrication of a TiO2-BOD heterojunction and its application as a photocatalyst for the simultaneous oxidation of an azo dye and reduction of Cr(VI). Environ Sci Technol 42:3791–3796

    Google Scholar 

  47. Bhatia V, Malekshoar G, Dhira A, Ray AK (2017) Enhanced photocatalytic degradation of atenolol using graphene TiO2 composite. J Photochem Photobiol, A 332:182–187

    Google Scholar 

  48. An T, An J, Yang H, Li G, Feng H, Nie X (2011) Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. J Hazard Mater 197:229–236

    Google Scholar 

  49. Restivo J, Garcia-Bordejé E, Órfão J, Pereira M (2016) Carbon nanofibers doped with nitrogen for the continuous catalytic ozonation of organic pollutants. Chem Eng J 293:102–111

    Google Scholar 

  50. Restivo J, Órfão J, Armenise S, Garcia-Bordeje E, Pereira M (2012) Catalytic ozonation of metolachlor under continuous operation using nanocarbon materials grown on a ceramic monolith. J Hazard Mater 239–240:249–256

    Google Scholar 

  51. Sun Q, Wang Y, Li L, Bing J, Wang Y, Yan H (2015) Mechanism for enhanced degradation of clofibric acid in aqueous by catalytic ozonation over MnOx/SBA-15. J Hazard Mater 286:276–284

    Google Scholar 

  52. Akhtar J, Amin N, Aris A (2011) Combined adsorption and catalytic ozonation for removal of sulfamethoxazole using Fe2O3/CeO2 loaded activated carbon. Chem Eng J 170:136–144

    Google Scholar 

  53. Roshani B, McMaster I, Rezaei E, Soltan J (2014) Catalytic ozonation of benzotriazole over alumina supported transition metal oxide catalysts in water. Sep Purif Technol 135:158–164

    Google Scholar 

  54. Bhatia V, Ray AK, Dhir A (2016) Enhanced photocatalytic degradation of ofloxacin by co-doped ti tanium dioxide under solar irradiation. Sep Purif Technol 161:1–7

    Google Scholar 

  55. Augugliaro V, García-López E, Loddo V, Malato-Rodríguez S, Maldonado I, Marcì G, Molinari R, Palmisano L (2005) Degradation of lincomycin in aqueous medium: coupling of solar photocatalysis and membrane separation. Sol Energy 79:402–408

    Google Scholar 

  56. Murphy S, Saurel C, Morrissey A, Tobin J, Oelgemöller M, Nolana K (2012) Photocatalytic activity of a porphyrin/TiO2 composite in the degradation of pharmaceuticals. Appl Catal B 119–120:156–165

    Google Scholar 

  57. Mohammadi R, Massoumi B, Rabani M (2012) Photocatalytic decomposition of amoxicillin trihydrate antibiotic in aqueous solutions under UV irradiation using Sn/TiO2 nanoparticles. Int J Photoenergy 2012:514856. https://doi.org/10.1155/2012/514856

    Article  Google Scholar 

  58. Hu A, Zhang X, Luong D, Oakes KD, Servos MR, Liang R, Kurdi S, Peng P, Zhou Y (2012) Adsorption and photocatalytic degradation kinetics of pharmaceuticals by TiO2 nanowires during water treatment. Waste Biomass Valoriz 3:443–449

    Google Scholar 

  59. Avisar D, Horovitz I, Lozzi L, Ruggieri F, Baker M, Abel M-L, Mamane H (2013) Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces. J Hazard Mater 244–245:463–471

    Google Scholar 

  60. Choina J, Kosslicka H, Fischer C, Flechsig G-U, Frunza L, Schulz A (2013) Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl Catal B 129:589–598

    Google Scholar 

  61. Coleman HM, Abdullah MI, Eggins BR, Palmer FL (2005a) Photocatalytic degradation of 17β- oestradiol, oestriol and 17α-ethynyloestradiol in water monitored using fluorescence spectroscopy. Appl Catal B Environ 55:23–30

    Google Scholar 

  62. Rafqah S, Wong-Wah-Chung P, Nelieu S, Einhorn J, Sarakha M (2006) Phototransformation of triclosan in the presence of TiO2 in aqueous suspension: mechanistic approach. Appl Catal B Environ 66:119–125

    Google Scholar 

  63. Yang L, Yu LE, Ray MB (2008) Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Res 42:3480–3488

    Google Scholar 

  64. Mendez-Arriaga F, Esplugas S, Gimenez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594

    Google Scholar 

  65. Chen M, Chu W (2012) Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. J Hazard Mater 219–220:183–189

    Google Scholar 

  66. Giraldo AL, Penuela GA, Torres-Palma RA, Pino NJ, Palominos RA, Mansilla HD (2010) Degradation of the antibiotic oxolinic acid by photocatalysis with TiO2 in suspension. Water Res 44:5158–5167

    Google Scholar 

  67. Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252:46–52

    Google Scholar 

  68. Coleman HM, Eggins BR, Byrne JA, Palmer FL, King E (2000) Photocatalytic degradation of 17β- oestradiol on immobilized TiO2. Appl Catal B Environ 24:L1–L5

    Google Scholar 

  69. Hapeshi E, Achilleos A, Vasquez MI, Michael C, Xekoukoulotakis NP, Mantzavinos D, Kassinos D (2010) Drugs degrading photocatalytically: kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res 44:1737–1746

    Google Scholar 

  70. Coleman HM, Chiang K, Amal R (2005b) Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chem Eng J 113:65–72

    Google Scholar 

  71. Chatzitakis A, Berberidou C, Paspaltsis I, Kyriakou G, Sklaviadis T, Poulios I (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394

    Google Scholar 

  72. Tanizaki T, Kadokami K, Shinohara R (2002) Catalytic photodegradation of endocrine disrupting chemicals using titanium dioxide photo semiconductor thin films. Bull Environ Contam Toxicol 68:732–739

    Google Scholar 

  73. Nakashima T, Ohko Y, Kubota Y, Fujishima A (2003) Photocatalytic decomposition of estrogens in aquatic environment by reciprocating immersion of TiO2-modified polytetrafluoroethylene mesh sheets. J Photochem Photobiol A 160:115–120

    Google Scholar 

  74. Abellan MN, Bayarri B, Gimenez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74:233–241

    Google Scholar 

  75. Coleman HM, Vimonses V, Leslie G, Amal R (2007) Removal of contaminants of concern in water using advanced oxidation techniques. Water Sci Technol 55:301–306

    Google Scholar 

  76. Ziemiańska J, Adamek E, Sobczak A, Lipska I, Makowski A, Baran W (2010) The study of photocatalytic degradation of sulfonamides applied to municipal wastewater. Physicochem Probl Miner Process 45:127–140

    Google Scholar 

  77. Mahlambi MM, Ngila CJ, Mamba BB (2015) Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles – a review. J Nanomater 2015:790173. https://doi.org/10.1155/2015/790173

    Article  Google Scholar 

  78. Bougeard CMM, Goslan EH, Jefferson B, Parsons SA (2010) Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Res 44:729–740

    Google Scholar 

  79. Chen B, Lee W, Westerhoff PK, Krasner SW, Herckes P (2010) Solar photolysis kinetics of disinfection byproducts. Water Res 44:3401–3409

    Google Scholar 

  80. Chen Q, Xin Y, Zhu X (2015) Au-Pd nanoparticles-decorated TiO2 nanobelts for photocatalytic degradation of antibiotic levofloxacin in aqueous solution. Electrochim Acta 186:34–42

    Google Scholar 

  81. Xia D, Lo IMC (2016) Synthesis of magnetically separable Bi2O4/Fe3O4 hybrid nanocomposites with enhanced photocatalytic removal of ibuprofen under visible light irradiation. Water Res 100:393–404

    Google Scholar 

  82. Krissanasaeranee M, Wongkasemjit S, Cheetham AK, Eder D (2010) Complex carbon nanotube-inorganic hybrid materials as next-generation photocatalysts. Chem Phys Lett 496:133–138

    Google Scholar 

  83. Czech B, Buda W (2015) Photocatalytic treatment of pharmaceutical waste water using new multiwall carbonnanotubes /TiO2/ SiO2 nanocomposites. Environ Res 137:176–184

    Google Scholar 

  84. Zhang J, Du Y, Zhang L, Zheng X, Ma Y, Dong S, Zhou D (2017) Preparation of sponge carrier supported photocatalyst by self-assembly technique for phenol photo degradation in visible light. Mol Catal 432:1–7

    Google Scholar 

  85. Zhang X, Wang DK, Diniz da Costa JC (2014) Recent progresses on fabrication of photocatalytic membranes for water treatment. Catal Today 230:47–54

    Google Scholar 

  86. Liu G, Han K, Ye H, Zhu C, Gao Y, Liu Y, Zhou Y (2017) Graphene oxide/triethanolamine modified titanate nanowires as photocatalytic membrane for water treatment. Chem Eng J 320:74–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranjana Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Das, R., Bhattacharjee, C. (2019). Photocatalytic Decontamination in Pharmaceutical Effluent Treatment. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_93

Download citation

Publish with us

Policies and ethics