Degradation of Volatile Organic Compounds with Catalysts-Containing Zeolite and Ordered Mesoporous Silica

  • Anderson Joel SchwankeEmail author
  • Rosana Balzer
  • Sibele Pergher
Reference work entry


This chapter will show the general concepts of catalytic systems applied to reduction of atmospheric pollutants. The catalytic oxidation of volatile organic compounds (VOCs) is considered the most efficient strategy for the degradation to CO2 and H2O using low energy costs without creating further toxic by-products. The used catalysts are noble or transition metals, which are supported on matrices with high surface area, which play a key role to decrease the amount of expensive noble metals and contribute to the performance of the catalytic system. Zeolites and ordered mesoporous silica materials are a class of porous materials extensively used as catalysts and supports due to their unique properties such as high surface area, well-defined pores, and morphological control. Here, the general approaches about catalytic oxidation of VOCs combined with zeolite and ordered mesoporous silica as supports are discussed.


  1. 1.
    Khan FI, Kr Ghoshal A (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13:527–545. Scholar
  2. 2.
    da Silva AGM, Fajardo HV, Balzer R, Probst LFD, Lovón ASP, Lovón-Quintana JJ, Valença GP, Schreine WH, Robles-Dutenhefner PA (2015) Versatile and efficient catalysts for energy and environmental processes: mesoporous silica containing Au, Pd and Au-Pd. J Power Sources 285:460–468. Scholar
  3. 3.
    Weitkamp J (2000) Zeolites and catalysis. Solid State Ionics 131:175–188. Scholar
  4. 4.
    Moteki T, Murakami Y, Noda S, Maruyama S, Okubo T (2011) Zeolite surface as a catalyst support material for synthesis of single-walled carbon nanotubes. J Phys Chem C 115:24231–24237. Scholar
  5. 5.
    Yoshitake H, Yokoi T, Tatsumi T (2002) Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1. Chem Mater 14:4603–4610. Scholar
  6. 6.
    Lee C-K, Liu S-S, Juang L-C, Wang C-C, Lin K-S, Lyu M-D (2007) Application of MCM-41 for dyes removal from wastewater. J Hazard Mater 147:997–1005. Scholar
  7. 7.
    Matlahov I, Geiger Y, Goobes G (2014) Trapping RNase A on MCM41 pores: effects on structure stability, product inhibition and overall enzymatic activity. Phys Chem Chem Phys 16:9031–9038. Scholar
  8. 8.
    Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KWS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. Scholar
  9. 9.
    Payra P, Dutta PK (2003) Zeolites: a primer. In: Auerbach SM, Carrado KA, Dutta PK (eds) Handbook of zeolite science and technology, vol 2. Marcel Dekker Inc, New York, pp 1–1910Google Scholar
  10. 10.
    Cronstedt AF (1756). Kong Vet Acad Handlingar 17:120Google Scholar
  11. 11.
    IZA - International Zeolite Association., Accessed 28 July 2017
  12. 12.
    Gobeltz-Hautecoeur N, Demortier A, Lede B, Lelieur JP, Duhayon C (2002) Occupancy of the sodalite cages in the blue ultramarine pigments. Inorg Chem 41:2848–2854. Scholar
  13. 13.
    García-Pérez E, Dubbeldam D, Maesen TLM, Calero S (2006) Influence of cation Na/Ca ratio on adsorption in LTA 5A: a systematic molecular simulation study of alkane chain length. J Phys Chem B 110:23968–23976. Scholar
  14. 14.
    Jaramillo E, Chandross M (2004) Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J Phys Chem B 108:20155–20159. Scholar
  15. 15.
    Zheng H, Zhao L, Ji J, Gao J, Xu C, Luck F (2015) Unraveling the adsorption mechanism of mono- and Diaromatics in Faujasite zeolite. ACS Appl Mater Interfaces 7:10190–10200. Scholar
  16. 16.
    Cundy CS, Cox PA (2005) The hydrothermal synthesis of zeolites: precursors, intermediates and reaction mechanism. Microporous Mesoporous Mater 82:1–78. Scholar
  17. 17.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  18. 18.
    Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114:10834–10843. Scholar
  19. 19.
    Roth WJ, Vartuli JC (2005) Synthesis of mesoporous molecular sieves. In: Ĉejka J, Hv B (eds) Studies in surface science and catalysis, vol 157. Elsevier, Amsterdam, pp 91–110. Scholar
  20. 20.
    Corma A, Grande MS, Gonzalez-Alfaro V, Orchilles AV (1996) Cracking activity and hydrothermal stability of MCM-41 and its comparison with amorphous silica-alumina and a USY zeolite. J Catal 159(2):375–382. Scholar
  21. 21.
    Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente J (2001) A new property of MCM-41: drug delivery system. Chem Mater 13(2):308–311. Scholar
  22. 22.
    Qu F, Zhu G, Huang S, Li S, Qiu S (2006) Effective controlled release of captopril by Silylation of mesoporous MCM-41. ChemPhysChem 7(2):400–406. Scholar
  23. 23.
    Huo Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF (1994) Organization of Organic Molecules with inorganic molecular species into nanocomposite Biphase arrays. Chem Mater 6(8):1176–1191. Scholar
  24. 24.
    Huo Q, Leon R, Petroff PM, Stucky GD (1995) Mesostructure design with Gemini surfactants: Supercage formation in a three-dimensional hexagonal Array. Science 268(5215):1324–1327. Scholar
  25. 25.
    Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267(5199):865–867. Scholar
  26. 26.
    Meynen V, Cool P, Vansant EF (2009) Verified syntheses of mesoporous materials. Microporous Mesoporous Mater 125:170–223. Scholar
  27. 27.
    Yang SW, Kondo JN, Hayashi K, Hirano M, Domen K, Hosono H (2004) Partial oxidation of methane to syngas over promoted C12A7. Appl Catal A Gen 277:239–246. Scholar
  28. 28.
    Yang ZW, Kang QX, Ma HC, Li CL, Lei ZQ (2004) Oxidation of cyclohexene by dendritic PAMAMSA-Mn(II) complexes. J Mol Catal A: Chem 213:169–176. Scholar
  29. 29.
    Zabihi M, Khorasheh F, Shayegan J (2015) Supported copper and cobalt oxides on activated carbon for simultaneous oxidation of toluene and cyclohexane in air. RSC Adv 5:5107–5122. Scholar
  30. 30.
    Zabihi M, Khorasheh F, Shayegan J (2015) Studies on the catalyst preparation methods and kinetic behavior of supported cobalt catalysts for the complete oxidation of cyclohexane. React Kinet Mech Catal 114:611–628. Scholar
  31. 31.
    Zabihi M, Shayegan J, Fahimirad M, Khorasheh F (2015) Preparation, characterization and kinetic behavior of supported copper oxide catalysts on almond shell-based activated carbon for oxidation of toluene in air. J Porous Mater 22:101–118. Scholar
  32. 32.
    Becker L, Förster H (1997) Investigations of coke deposits formed during deep oxidation of benzene over Pd and cu exchanged Y-type zeolites. Appl Catal A Gen 153:31–41. Scholar
  33. 33.
    Becker L, Förster H (1998) Oxidative decomposition of benzene and its methyl derivatives catalyzed by copper and palladium ion-exchanged Y-type zeolites. Appl Catal B Environ 17:43–49. Scholar
  34. 34.
    Dégé P, Pinard L, Magnoux P, Guisnet M (2001) Catalytic oxidation of volatile organic compounds (VOCs). Oxidation of o-xylene over Pd and Pt/HFAU catalysts. C R Acad Sci Ser IIc: Chim 4:41–47. Scholar
  35. 35.
    Anisia KS, Kumar A (2007) Oxidation of cyclohexane with molecular oxygen in presence of characterized macrocyclic heteronuclear FeCu complex catalyst ionically bonded to zirconium pillared montmorillonite clay. J Mol Catal A: Chem 271:164–179. Scholar
  36. 36.
    Aouissi A (2010) Transformation of n-heptane by Bronsted acidic sites over 12-Tungstosilicic acid. Asian J Chem 22:4924–4930Google Scholar
  37. 37.
    Rodrigues TSDS, Anderson GM, Gonçalves MC, Fajardo HV, Balzer R, Probst LFD, Camargo PHC (2015) AgPt hollow Nanodendrites: synthesis and uniform dispersion over SiO 2 support for catalytic applications. ChemNanoMat 1:46–51CrossRefGoogle Scholar
  38. 38.
    Choudary BM, Lakshmi Kantam M, Mahender Reddy N, Koteswara Rao K, Haritha Y, Bhaskar V, Figueras F, Tuel A (1999) Hydrogenation of acetylenics by Pd-exchanged mesoporous materials. Appl Catal A Gen 181:139–144. Scholar
  39. 39.
    Tsoncheva T, Issa G, Blasco T, Dimitrov M, Popova M, Hernández S, Kovacheva D, Atanasova G, Nieto JML (2013) Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica. Appl Catal A Gen 453:1–12. Scholar
  40. 40.
    Yan ZX, Wei W, Xie JM, Meng SC, Lu X, Zhu JJ (2013) An ion exchange route to produce WO3 nanobars as Pt electrocatalyst promoter for oxygen reduction reaction. J Power Sources 222:218–224. Scholar
  41. 41.
    Tuna P, Brandin J (2013) Selective catalytic oxidation of ammonia by nitrogen oxides in a model synthesis gas. Fuel 105:331–337. Scholar
  42. 42.
    XD W, WC Y, Si ZC, Weng D (2013) Chemical deactivation of V2O5-WO3/TiO2 SCR catalyst by combined effect of potassium and chloride. Front Env Sci Eng 7:420–427. Scholar
  43. 43.
    Todorova S, Naydenov A, Kolev H, Holgado JP, Ivanov G, Kadinov G, Caballero A (2012) Mechanism of complete n-hexane oxidation on silica supported cobalt and manganese catalysts. Appl Catal A Gen 413:43–51. Scholar
  44. 44.
    Menezo JC, Riviere J, Barbier J (1993) Effect of the doping of a metal-oxide by platinum on its oxidizing properties. React Kinet Catal Lett 49:293–298CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anderson Joel Schwanke
    • 1
    Email author
  • Rosana Balzer
    • 2
  • Sibele Pergher
    • 1
  1. 1.Laboratório de Peneiras Moleculares (LABPEMOL)Universidade Federal do Rio Grande do Norte – UFRNNatalBrazil
  2. 2.Departamento de Exatas e EngenhariasUniversidade Federal do Paraná – UFPRCuritibaBrazil

Personalised recommendations