Skip to main content

Optimization of Bulk Heterojunction Organic Photovoltaic Devices

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Stabilizing the global climate and energy security are the biggest challenges of humanity in this century and thus created substantial political, academic, and industrial interest in the renewable energy resources. Among renewable energy sources, solar photovoltaic has the most promise for becoming a major energy source. In the field of photovoltaic technologies, the organic solar cells represent a transformative technology with great potential for extremely high-throughput manufacturing at very low cost, low environmental impact, mechanical flexibility, molecular tailorability and made from nontoxic, earth-abundant materials with short energy payback times. The introduction of new light absorbing materials, device architectures, and light management structures has resulted in enhancement of the power conversion efficiencies from 2.5% in 2001, to 5% in 2006, to greater than 10% in 2016 for small solar cells, predicting a bright future for organic solar cells. However, before large-scale commercialization and entering a direct competition with state of the art inorganic PV technologies, further improvements especially in the power conversion efficiency are required. It is strange that despite of rapid progress in organic solar cells, there is no standard validation tool for device optimization. The experimental optimization is expensive and time-consuming as reduced feature size needs more complicated and costly manufacturing processes. Thus, simulation and modeling becomes indispensable tool for cost-effective and accurate optimization of such nanoscale devices. Optical modeling enables a quantitative comparison of optical performance of alternative materials, the optimization of the physical structure of the device, finding the dependency of devices efficiency on structure parameters and material properties, the analysis of loss mechanisms, and the calculation of the generation profile for electronic modeling. From the optical point of view, thin-film organic solar cells are multilayer structures, thus interference effects between forward- and backward-going (reflected) light have to be considered in the analysis. The transfer matrix method, where transmission and reflection are calculated for each interface in the stack as well as attenuation in each layer is employed. This chapter summarizes the various optical modeling techniques employed for the optical optimization of bulk heterojunction (BHJ) structure and other OPV solar cells and their corresponding development in recent years based on device physics and its working principle. Optical optimization of PBDTTPD:PCBM BHJ OPV has been carried out with respect to various parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Espinosa N, Hösel M, Angmo D, Krebs FC (2012) Solar cells with one-day energy payback for the factories of the future. Energ Environ Sci 5(1):5117–5132

    Article  Google Scholar 

  2. Dresselhause MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  Google Scholar 

  3. Lackner KS (2010) Issues in environmental science and technology. In: Hester RE, Harrison RM (eds) Carbon capture: sequestration and storage, vol 29. Royal Society of Chemistry, p 1–41

    Google Scholar 

  4. Tiwari S, Yakhmi JV (2015) Recent advances in luminescent nanomaterials for solid state lighting applications. In: Virk HS (ed) Defect and diffusion forum, vol 361. Trans Tech Publications, p 15–68

    Google Scholar 

  5. Shaheen SE, Brabec CJ, Sariciftci NS (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Article  Google Scholar 

  6. Tang Z, Tress W, Inganäs O (2014) Light trapping in thin film organic solar cells. Mater Today 17:389–396

    Article  Google Scholar 

  7. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595. https://doi.org/10.1038/nphoton.2012.190

    Article  Google Scholar 

  8. Heliatek Press Release (2013) http://www.heliatek.com

  9. Zhicai He, Chengmei Zhong, Shijian Su, Miao Xu, Wu H, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Article  Google Scholar 

  10. Brabec CJ, Gowrisanker S, Halls JJ, Laird D, Jia S, Williams SP (2010) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 22:3839–3856

    Article  Google Scholar 

  11. Hillhouse HW, Beard MC (2009) Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Curr Opin Colloid Interface Sci 14(2):245–259. https://doi.org/10.1016/j.cocis.2009.05.002

    Article  Google Scholar 

  12. Vervisch W, Biondo S, Rivière G, Duché D, Escoubas L, Torchio P, Simon JJ, Rouzo JL (2011) Optical-electrical simulation of organic solar cells: excitonic modeling parameter influence on electrical characteristics. Appl Phys Lett 98:p253306

    Article  Google Scholar 

  13. Duché D, Escoubas L, Simon JJ, Torchio P, Vervisch W, Flory F (2008) Slow Bloch-modes for enhancing the absorption of light in thin-films for photovoltaic cells. Appl Phys Lett 92:193310. https://doi.org/10.1063/1.2929747

    Article  Google Scholar 

  14. Tumbleston JR, Ko DH, Samulski ET, Lopez R (2009) Electro-photonic enhancement of bulk heterojunction organic solar cells through photonic crystal photoactive layer. Appl Phys Lett 94:043305. https://doi.org/10.1063/1.3075053

    Article  Google Scholar 

  15. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM (2005) Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys Rev B 72:085205

    Article  Google Scholar 

  16. Clarke TM, Durrant JR (2010) Charge photogeneration in organic solar cells. Chem Rev 110:6736–6767

    Article  Google Scholar 

  17. Grancini G, Maiuri M, Fazzi D, Petrozza A, Egelhaaf HJ, Brida D, Cerullo G, Lanzani G (2013) Hot exciton dissociation in polymer solar cells. Nat Mater 12:29–33, 594

    Article  Google Scholar 

  18. Scharber MC, Sariciftci NC (2013) Efficiency of bulk-heterojunction organic solar cells. Prog Polym Sci 38(12):1929–1940

    Article  Google Scholar 

  19. Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K (2016) Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater 28(36):7821–7861. https://doi.org/10.1002/adma.201601197

    Article  Google Scholar 

  20. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6% power conversion efficiency. Nat Commun 4:1446. https://doi.org/10.1038/ncomms2411

    Article  Google Scholar 

  21. Janssen RA, Nelson J (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater 25:1847–1858

    Article  Google Scholar 

  22. Bakulin AA, Martyanov DS, Paraschuk DY, Pshenichnikov MS, van Loosdrecht PHMJ (2008) Ultrafast charge photogeneration dynamics in ground-state charge-transfer complexes based on conjugated polymers. J Phys Chem B 112:13730

    Article  Google Scholar 

  23. Sun Y, Welch GC, Leong WL, Takacs CJ, Bazan GC, Heeger AJ (2012) Solution-processed small-molecule solar cells with 6.7% efficiency. Nat Mater 11:44–48

    Article  Google Scholar 

  24. Bundgaard E, Krebs FC (2007) Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 91:954–985

    Article  Google Scholar 

  25. Junsheng Y, Zheng Y, Huang J (2014) Towards high performance organic photovoltaic cells: a review of recent development in organic photovoltaics. Polymers 6:2473–2509. https://doi.org/10.3390/polym6092473

    Article  Google Scholar 

  26. Kadem B, Hassan A, Cranton W (2016) Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J Mater Sci: Mater Electron 27(7):7038–7048

    Google Scholar 

  27. Zhang Y, Bovill E, Kingsley J, Buckley AR, Yi H, Iraqi A, Wang T, Lidzey DG (2016) PCDTBT based solar cells: one year of operation under real-world conditions. Sci Rep 6:1–8. https://doi.org/10.1038/srep21632

    Article  Google Scholar 

  28. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731

    Article  Google Scholar 

  29. Jagadamma LK, Abdelsamie M, Labban E, Aresu A, Ndjawa E, Anjum DH, Beaujuge CD, Amassian PM (2014) Efficient inverted bulk-heterojunction solar cells from low-temperature processing of amorphous ZnO buffer layers. J Mater Chem A 2:13321–13331

    Article  Google Scholar 

  30. Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7):1924–1945. https://doi.org/10.1557/JMR.2004.0252

    Article  Google Scholar 

  31. Rand BP, Richter H (ed) (2014) Organic solar cells: fundamentals, devices, and upscaling; Rand BP, Pan Stanford Hoppe H, Sariciftci NS (2004) Organic solar cells: an overview. J Mater Res 19(7)

    Google Scholar 

  32. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338. https://doi.org/10.1002/adma.200801283

    Article  Google Scholar 

  33. Zheng L, Zhou Q, Deng X, Min Y, Gang Y, Cao Y (2004) Methanofullerenes used as electron acceptors in polymer photovoltaic devices. J Phys Chem B 108(32):11921–11926. https://doi.org/10.1021/jp048890i

    Article  Google Scholar 

  34. Kirchartz T, Pieters BE, Taretto K, Rau U (2008) J Appl Phys 104:094513

    Article  Google Scholar 

  35. Nelson J (2011) Polymer:fullerene bulk heterojunction solar cells. Mater Today 14(10):462–470. https://doi.org/10.1016/S1369-7021(11)70210-3

    Article  Google Scholar 

  36. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells – towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794. https://doi.org/10.1002/adma.200501717

    Article  Google Scholar 

  37. Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15(10):1617–1622. https://doi.org/10.1002/adfm.20050021

    Article  Google Scholar 

  38. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing: effect in polymer solar cells based on poly(3-hexylthiophene) and Methanofullerenes. Adv Funct Mater 17(10):1636–1644. https://doi.org/10.1002/adfm.200600624

    Article  Google Scholar 

  39. Park SH, Roy A, Serge Beaupré S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302. https://doi.org/10.1038/nphoton.2009.69

    Article  Google Scholar 

  40. Persson NK, Inganas O (2005) Simulations of optical processes in organic photovoltaic devices. In: Sun S, Sariciftci NS (eds) Organic photovoltaics: mechanisms, materials and devices. CRC Press, Boca Raton

    Google Scholar 

  41. Heine C, Morf R (1995) Submicrometer gratings for solar energy applications. Appl Opt 34(14):2476–2482

    Article  Google Scholar 

  42. Roman LS, Inganas O, Granlund T, Nyberg T, Svensson M, Andersson MR, Hummelen J (2000) Trapping light in polymer photodiodes with soft embossed gratings. Adv Mater 12(3):189–195

    Article  Google Scholar 

  43. Li G, Liu L, Wei F (2013) Modelling and simulation of organic photovoltaic cells. In: Zhang M, Li G, Xi N (eds) Modeling and control for micro/nano devices and systems, 1st edn. CRC Press, p 31–51

    Google Scholar 

  44. Sariciftci NS (ed) (1998) Primary photoexcitations in conjugated polymers: molecular exciton versus semiconductor band model. World Scientific, Singapore

    Google Scholar 

  45. Janssen R (2006) Absorbing infrared light in polymer solar cells, SPIE Newsroom. doi:https://doi.org/10.1117/2.1200606.0315

  46. Dou L, Liu Y, Hong Z, Li G, Yang Y (2015) Low-bandgap near-IR conjugated polymers/molecules for organic electronics. Chem Rev 115:12633–12665. https://doi.org/10.1021/acs.chemrev.5b00165

    Article  Google Scholar 

  47. Mesrane A, Mahrane A, Rahmoune F, Oulebsir A (2017) Theoretical study and simulations of an InGaN dual-junction solar cell. J Electron Mater 46(3):1458. https://doi.org/10.1007/s11664-016-5176-z

    Article  Google Scholar 

  48. Hedley JG, Ruseckas A, Samuel IDW (2017) Light harvesting for organic photovoltaics. Chem Rev 117(2):796–837. https://doi.org/10.1021/acs.chemrev.6b00215

    Article  Google Scholar 

  49. Wenping Hu, Fenglian Bai, Xiong Gong, Xiaowei Zhan, Hongbing Fu, Thomas Bjornholm (eds) (2013) Organic optoelectronics, John Wiley & Sons, Inc

    Google Scholar 

  50. Alves H, Molinari AS, Xie H, Morpurgo AF (2008) Metallic conduction at organic charge-transfer interfaces. Nat Mater 7:574–580. https://doi.org/10.1038/nmat2205

    Article  Google Scholar 

  51. Tessler N, Preezant Y, Rappaport N, Roichman Y (2009) Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv Mater 21(27):2741. https://doi.org/10.1002/adma.20080354

    Article  Google Scholar 

  52. Pivrikas A, Sarıçiftçi NS, Juška G, Österbacka R (2007) A review of charge transport and recombination in polymer/fullerene organic solar cells. Prog Photovolt Res Appl 15(8):677. https://doi.org/10.1002/pip.79

    Article  Google Scholar 

  53. Sun SS (2007) Recent progress of organic photovoltaic. In: Yogi Goswami D (ed) Advances in solar energy: an annual review of research and development in renewable energy technologies, Advances in solar energy series, vol 17, 1st edn. Routledge, pp 74–98

    Google Scholar 

  54. Tiwari S, Greenham NC, Kabra D (2009) Numerical simulation of single layer polymer light-emitting diodes. Opt Quant Electron 40(14):1267–1272

    Google Scholar 

  55. Hu W, Avrutin E, Javaloyes J, Sujecki S, Swillam M (2015) Introduction to the special issue on numerical simulation of optoelectronic devices NUSOD’14. Opt Quant Electron 47(6):1291–1292

    Article  Google Scholar 

  56. Stangl R, Leendertz C, Haschke J (2010) Numerical simulation of solar cells and solar cell characterization methods: the Open-Source on Demand Program AFORS-HET. In: Rugescu RD (ed) Solar energy, Intech

    Google Scholar 

  57. Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd edn. Artech House, Norwood

    MATH  Google Scholar 

  58. Elsherbeni AZ, Demir V (2009) The finite-difference time-domain method for electromagnetics with MATLAB® simulations. SciTech Publishing, New York

    Google Scholar 

  59. Wei SB, Zhang SQ, Dong H, Wang F (2009) A general FDTD algorithm handling thin dispersive layer. Prog Electromagn Res 18:243–257

    Article  Google Scholar 

  60. Yee KS (1966) Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans Antennas Propagat 14:302–307

    Article  MATH  Google Scholar 

  61. Shlager KL, Schneider JB (1998) A selective survey of the finite-difference time-domain literature. In: Taflove A (ed) Chap 1 in Advances in computational electrodynamics: the finite-difference time-domain method. Artech House Inc

    Google Scholar 

  62. Dewan R, Vasilev I, Jovanov IV, Knipp D (2011) Optical enhancement and losses of pyramid textured thin-film silicon solar cells. J Appl Phys 110(1):013101. https://doi.org/10.1063/1.3602092

    Article  Google Scholar 

  63. Lacombe J, Sergeev O, Chakanga K, Maydell KV, Agert C (2011) Three dimensional optical modeling of amorphous silicon thin film solar cells using the finite-difference time-domain method including real randomly surface topographies. J Appl Phys 110(2):023102. https://doi.org/10.1063/1.3610516

    Article  Google Scholar 

  64. Pflaum C, Rahimi Z (2011) An iterative solver for the finite-difference frequency-domain (FDFD) method for the simulation of materials with negative permittivity. Numer Linear Algebra Appl 18(4):653–670. https://doi.org/10.1002/nla.746

    Article  MathSciNet  MATH  Google Scholar 

  65. Solntsev S, Zeman M (2011) Optical modeling of thin-film silicon solar cells with submicron periodic gratings and non conformal layers. Energy Procedia 10:308–312. https://doi.org/10.1016/j.egypro.2011.10.196

    Article  Google Scholar 

  66. Oughstun KE, Cartwright NA (2003) On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt Express 11(13):1541–1546

    Article  Google Scholar 

  67. Krc J, Topic M (2013) Optical modeling and simulation of thin-film photovoltaic devices, 1st edn. CRC Press, p 3–34

    Google Scholar 

  68. Haase C, Stiebig H (2006) Optical properties of thin-film silicon solar cells with grating couplers. 14(7):629–641

    Google Scholar 

  69. Nevière M, Popov E (2002) Light propagation in periodic media: differential theory and design. CRC Press

    Google Scholar 

  70. Chen J, Wang Q, Li H (2010) Microstructured design for light trapping in thin-film silicon solar cells. Opt Eng 49(8):088001. https://doi.org/10.1117/1.3476334

    Article  Google Scholar 

  71. Li ZY, Lin LL (2003) Photonic band structures solved by a plane-wave-based transfer-matrix method. Phys Rev E 67:046607

    Article  Google Scholar 

  72. Tiwari S, Carter S, Scott JC (2014) Optical simulation of quantum dot thin film solar cells. IEEE Recent Advances in Photonics, 14651212. doi:https://doi.org/10.1109/WRAP.2013.6917711

  73. Li L (1996) Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings. J Opt Soc Am A 13(5):1024–1035

    Article  Google Scholar 

  74. Ghosh AK, Feng T (1978) Cyanine organic solar cells. J Appl Phys 49(12):5982–5989

    Article  Google Scholar 

  75. Gondek E (2014) Optical optimization of organic solar cell with bulk heterojunction. Opto-Electron Rev 22(2):77–85. https://doi.org/10.2478/s11772−014−0180−4

    Article  Google Scholar 

  76. Xin Yan Z, BaoXiu M, ZhiQiang G, Wei H (2011) Recent progress in the numerical modeling for organic thin film solar cells. Sci China Phys Mech Astron March 54(3):375–387. https://doi.org/10.1007/s11433-011-4248-6

    Article  Google Scholar 

  77. Nam YM, Huh J, Jo WH (2010) Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 94:1118–1124

    Article  Google Scholar 

  78. Moulé AJ, Bonekamp JB, Meerholz K (2006) The effect of active layer thickness and composition on the performance of bulk-heterojunction solar cells. J Appl Phys 100:094503

    Article  Google Scholar 

  79. Gunaicha PP(2012) Optical modeling of solar cells theses and dissertations. The University of Toledo Digital Repository Paper 325

    Google Scholar 

  80. Zhou, Dayu (2008) Light-trapping enhancement in thin film solar cells with photonic crystals. Retrospective theses and dissertations. Paper 15473

    Google Scholar 

  81. Pettersson LAA, Roman LS, Inganas O (1999) Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J Appl Phys 86(1):487–496

    Article  Google Scholar 

  82. Heavens O (1991) Optical properties of thin solid films, Ch. 4. Dover, New York, p 46–95

    Google Scholar 

  83. Burkhard GF, Hoke ET, McGehee MD (2010) Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Adv Mater 22:3293–3297

    Article  Google Scholar 

  84. Tress W (2015) Modelling organic solar cells: theory, experiment, and device simulation. Springer, p 215–271

    Google Scholar 

  85. Jung S, Kim KY, Lee YI, Youn JH, Moon HT, Jang J, Kim J (2011) Optical modeling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method. Jpn J Appl Phys 50:122301

    Article  Google Scholar 

  86. Peumans P, Yakimov A, Forrest SR (2003) Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 93(7):3693–3723

    Article  Google Scholar 

  87. Hoppe H, Arnold N, Sariciftci NS, Meissner D (2003) Modeling the optical absorption within conjugated polymer/fullerene-based bulk-heterojunction organic solar cells. Sol Energy Mater Sol Cells 80(1):105–113; Hoppe H, Arnold N, Meissner D, Sariciftci NS (2004) Modeling of optical absorption in conjugated polymer fullerene bulk-heterojunction plastic solar cells. Thin Solid Films 451–452:589–592

    Google Scholar 

  88. Ka Y, Hwang H, Kim C (2017) Hybrid organic tandem solar cell comprising small-molecule bottom and polymer:fullerene top subcells fabricated by thin-film transfer. Sci Rep 7:1942. https://doi.org/10.1038/s41598-017-02181-6

    Article  Google Scholar 

  89. Kotlarski JD (2012) Optical and electrical modeling of polymer: fullerene bulk heterojunction solar cells. Groningen: s.n

    Google Scholar 

  90. Stolterfoht M, Ardalan Armin A, Shoaee S, Kassal I, Burn P, Meredith P (2016) Slower carriers limit charge generation in organic semiconductor light-harvesting systems. Nat Commun 7:11944. https://doi.org/10.1038/ncomms11944

    Article  Google Scholar 

  91. Luo G, Re X, Zhang S, Wu H, Choy WCH, He Z, Cao Y (2016) Small recent advances in organic photovoltaics: device structure and optical engineering optimization on the. Nanoscale 12(12):1547–1571

    Google Scholar 

  92. Schroeder BC, Li Z, Brady MA, Faria GC, Ashraf RS, Takacs CJ, Cowart JS, Duong DT, Chiu KH, Tan CH, Cabral JT, Salleo A, Chabinyc ML, Durrant JR, McCulloch I (2014) Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew Chem Int Ed 53:12870–12875

    Article  Google Scholar 

  93. Mazzio KA, Luscombe KC (2015) The future of organic photovoltaics. Chem Soc Rev 44:78–90. https://doi.org/10.1039/C4CS00227J

    Article  Google Scholar 

  94. Lizin S, Passel SV, Schepper ED, Maes W, Lutsen L, Manca J, Vanderzande D (2013) Life cycle analyses of organic photovoltaics: a review. Energy Environ Sci 6:3136–3149. https://doi.org/10.1039/C3EE42653J

    Article  Google Scholar 

  95. Troshin PA, Sariciftci NS (2013) Organic nanomaterials for efficient bulk heterojunction solar cells organic nanomaterials: synthesis, characterization, and device applications. In: Torres T, Bottari G (eds) 1st edn. John Wiley & Sons, Inc.

    Google Scholar 

  96. Sun Y, Takacs CJ, Cowan SR, Seo HJ, Gong X, Roy A, Heeger AJ (2011) Efficient, air-stable bulk heterojunction polymer solar cells using MoOx as the anode interfacial layer. Adv Mater 23:2226–2230

    Article  Google Scholar 

  97. Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry. John Wiley & Sons, New York

    Google Scholar 

  98. Dittmer JJ (2001) Dye/polymer blends for organic solar cells PhD theses, University of Cambridge

    Google Scholar 

  99. Wan MWV, Friend RH, Greenham NC (2000) Modelling of interference effects in anisotropic conjugated polymer devices. Thin Solid Films 363:310

    Article  Google Scholar 

  100. Wong SYQ, Wong HY, Tan CS, Meng HF (2014) Performance optimization of organic solar cells. IEEE Photonics J 6(4):1. https://doi.org/10.1109/JPHOT.2014.2337896

    Article  Google Scholar 

  101. Moule AJ, Meerholz K (2007) Minimizing optical losses in bulk heterojunction polymer solar cells. Appl Phys B Lasers Opt 86:721–727

    Article  Google Scholar 

  102. Ameri T, Dennler G, Waldauf C, Denk P, Forberich K, Scharber MC, Brabec CJ, Hingerl K (2008) Realization, characterization and optical modeling of inverted bulk-heterojunction organic solar cells. J Appl Phys 103:084506

    Article  Google Scholar 

  103. Lin CF, Zhang M, Liu SW, Chiu TL, Lee JH (2011) High photoelectric conversion efficiency of metal Phthalocyanine/fullerene heterojunction photovoltaic device. Int J Mol Sci 12(1):476–505

    Article  Google Scholar 

  104. Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133–146

    Article  Google Scholar 

  105. Kymakis E, Spyropoulos GD, Fernandes R, Kakavelakis G, Kanaras AG, Stratakis E (2015) Plasmonic bulk heterojunction solar cells: the role of nanoparticle ligand coating ACS Photonics 2:714−723

    Google Scholar 

  106. Chang S, Tien L, Lee L, Chen T (2013) Plasmon-enhanced Excitonic solar cells. In: Xiaodong Wang, Zhiming M. Wang (eds) High-efficiency solar cells springer series in materials science 90:515–544. https://doi.org/10.1007/978-3-319-01988-8_17

    Google Scholar 

  107. Čampa A, Krč J, Topič M (2009) Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations. J Appl Phys 105(8):083107. https://doi.org/10.1063/1.3115408

    Article  Google Scholar 

  108. Weiland T (1977) A discretization method for the solution of Maxwell’s equations for six-component fields. Electron Commun AEU 31(3):116–120

    Google Scholar 

  109. Zhao L, Zuo YH, Zhou CL, Li HL, Diao HW, Wang WJ (2010) A highly efficient light-trapping structure for thin-film silicon solar cells. Sol Energy 84(1):110–115. https://doi.org/10.1016/j.solener.2009.10.014.

    Article  Google Scholar 

  110. Li N, Chen D, Zhang C, Chang J, Lin Z, Han G, Zhang J, Guo L, Hao Y (2016) High-performance low-bandgap polymer solar cells with optical microcavity employing ultrathin Ag film electrode. IEEE Photonics J 8(6):1

    Google Scholar 

Download references

Acknowledgments

The author (ST) is grateful to Dr. Ralph Gebauer, Sr. Research Scientist, Abdus Salam ICTP, Italy for guidance and for financial support through Sr. Associateship of the Abdus Salam ICTP, Italy.The author acknowledges support of USIEF & Defence Research & Development Organization ,GOI for financial support through Fulbright Nehru Fellowship and MRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tiwari, S., Yakhmi, J.V., Carter, S.A., Scott, J.C. (2019). Optimization of Bulk Heterojunction Organic Photovoltaic Devices. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_66

Download citation

Publish with us

Policies and ethics