Skip to main content

Semiconductor Eco-materials for Water Treatment

  • Reference work entry
  • First Online:
  • 248 Accesses

Abstract

In the current chapter two semiconductor materials are being assessed as eco-materials of choice for key applications in the water business. Ultraviolet light-emitting diodes, UV-LEDs, based on III-Nitride ultraviolet emitters like GaN, InGaN, and AlGaN and semiconductor oxides like TiO2, ZnO, or WO3 can be used as eco-materials for disinfection and pollutant removal in water, respectively. Looking through the fabrication process, functional life span, as well as their final disposal and recycling, those materials contribute substantially to the reduction of the environmental burden through their whole life cycle. Future trends and development directions as well as their impact on new water market niches, via replacement of old and less environmentally friendly technologies, are suggested and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mishra AK (2016) Smart materials for waste water applications. Scrivener Publishing, Hoboken. https://doi.org/10.1002/9781119041214

    Book  Google Scholar 

  2. Werber JR, Osuji CO, Elimelech M (2016) Materials for next-generation desalination and water purification membranes. Nat Rev Mater 1:16018. https://doi.org/10.1038/natrevmats.2016.18

    Article  Google Scholar 

  3. Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28. https://doi.org/10.1016/j.susmat.2016.02.001

    Article  Google Scholar 

  4. Brown PS, Bhushan B (2016) Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. Philos Trans R Soc Lond A Math Phys Eng Sci 374:20160135

    Article  Google Scholar 

  5. Voisin H, Bergström L, Liu P, Mathew A (2017) Nanocellulose-based materials for water purification. Nano 7:57. https://doi.org/10.3390/nano7030057

    Article  Google Scholar 

  6. Gonzalez-Perez A, Persson KM (2016) Bioinspired materials for water purification. Materials (Basel) 9:447. https://doi.org/10.3390/ma9060447

    Article  Google Scholar 

  7. Halada K, Yamamoto R (2001) The current status of research and development on ecomaterials around the world. MRS Bull 26:871–879. https://doi.org/10.1557/mrs2001.227

    Article  Google Scholar 

  8. Halada K, Yamada K, Ijima K, Soeno Y (2003) Analysis of the current status of ecomaterials in Japan. Mater Trans 44:1237–1243. https://doi.org/10.2320/matertrans.44.1237

    Article  Google Scholar 

  9. Nie Z, Zuo T (2003) Ecomaterials research and development activities in China. Curr Opin Solid State Mater Sci 7:217–223. https://doi.org/10.1016/j.cossms.2003.09.009

    Article  Google Scholar 

  10. Shinohara Y (2004) Ecomaterials guideline project in Japan. In: Ist Japan-China symposium on eco-materials, recycling-oriented industry and environmental management, Suzhou, China

    Google Scholar 

  11. Kiochi Y (2002) Concept and development of ecomaterials. In: Proceedings of international workshop on eco-materials, Tokyo, Japan

    Google Scholar 

  12. Crul M, Diehl JC, Ryan C (2009) Design for sustainability: a step by step approach. http://www.d4s-sbs.org/. Accessed 8 Jun 2017

  13. Chen J, Loeb S, Kim J-H, Ducoste JJ, Zhang S, Chen J, Liu X, Nakaya Y, Akutagawa M, Kinouchi Y, Stockman SA, Kish FA, Craford MG, Tan TS, Kocot CP, Hueschen M, Posselt J, Loh B, Sasser G, Collins D (2017) LED revolution: fundamentals and prospects for UV disinfection applications. Environ Sci Water Res Technol 3:188–202. https://doi.org/10.1039/C6EW00241B

    Article  Google Scholar 

  14. Song K, Mohseni M, Taghipour F (2016) Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: a review. Water Res 94:341–349. https://doi.org/10.1016/j.watres.2016.03.003

    Article  Google Scholar 

  15. Paidalwar AA, Khediskar IP (2016) Overview of water disinfection by UV technology – a review. Int J Sci Technol Eng 2, 213--219.

    Google Scholar 

  16. Schalk S, Adam V, Arnold E, Brieden K, Voronov A, Witzke H-D (2005) UV-lamps for disinfection and advanced oxidation -lamp types, technologies and applications. IUVA News 8:32–37

    Google Scholar 

  17. Sholtes KA, Lowe K, Walters GW, Sobsey MD, Linden KG, Casanova LM (2016) Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. Environ Technol 37:2183–2188. https://doi.org/10.1080/09593330.2016.1144798

    Article  Google Scholar 

  18. Oppenländer T (2007) Mercury-free sources of VUV/UV radiation: application of modern excimer lamps (excilamps) for water and air treatment. J Environ Eng Sci 6:253–264. https://doi.org/10.1139/s06-059

    Article  Google Scholar 

  19. Lomaev MI, Sosnin EA, Tarasenko VF (2012) Excilamps and their applications. Prog Quantum Electron 36:51–97. https://doi.org/10.1016/j.pquantelec.2012.03.003

    Article  Google Scholar 

  20. Matafonova G, Batoev V (2012) Recent progress on application of UV excilamps for degradation of organic pollutants and microbial inactivation. Chemosphere 89:637–647. https://doi.org/10.1016/j.chemosphere.2012.06.012

    Article  Google Scholar 

  21. Masoud NM, Murnick DE (2013) High efficiency fluorescent excimer lamps: an alternative to mercury based UVC lamps. Rev Sci Instrum 84:123108. https://doi.org/10.1063/1.4842296

    Article  Google Scholar 

  22. Mahlambi MM, Ngila CJ, Mamba BB (2015) Recent developments in environmental photocatalytic degradation of organic pollutants: the case of titanium dioxide nanoparticles – a review. J Nanomater 2015:1–29. https://doi.org/10.1155/2015/790173

    Article  Google Scholar 

  23. Ameta R, Benjamin S, Ameta A, Ameta SC (2012) Photocatalytic degradation of organic pollutants: a review. Mater Sci Forum 734:247–272. https://doi.org/10.4028/www.scientific.net/MSF.734.247

    Article  Google Scholar 

  24. Ameta R, Ameta SC (2016) Photocatalysis: principles and applications, CRC Press

    Google Scholar 

  25. Khan MM, Adil SF, Al-Mayouf A (2015) Metal oxides as photocatalysts. J Saudi Chem Soc 19:462–464. https://doi.org/10.1016/j.jscs.2015.04.003

    Article  Google Scholar 

  26. Hernández-Ramírez A, Medina-Ramírez I (2015) Photocatalytic semiconductors: synthesis, characterization, and environmental applications, Springer Verlag

    Google Scholar 

  27. Yu PY, Cardona M (2010) Fundamentals of semiconductors : physics and materials properties. Springer, Berlin

    Book  Google Scholar 

  28. Gurnee EF (1969) Fundamental principles of semiconductors. J Chem Educ 46:80. https://doi.org/10.1021/ed046p80

    Article  Google Scholar 

  29. Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley-Interscience, Hoboken

    Google Scholar 

  30. Sze SM, Lee MK (2012) Semiconductor devices, physics and technology. Wiley, Hoboken

    Google Scholar 

  31. Muramoto Y, Kimura M, Nouda S (2014) Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp. Semicond Sci Technol 29:084004. https://doi.org/10.1088/0268-1242/29/8/084004

    Article  Google Scholar 

  32. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641. https://doi.org/10.1080/10643389.2013.829765

    Article  Google Scholar 

  33. (2017) WHO | Drinking-water. World Health Organization. http://www.who.int/mediacentre/factsheets/fs391/en/

    Google Scholar 

  34. Fewtrell L, Bartram J (2001) WHO | water quality: guidelines, standards and health. World Health Organization, Geneva

    Google Scholar 

  35. American Water Works Association, Edzwald J (2010) Water quality & treatment: a handbook on drinking water. McGraw Hill Professional, New York

    Google Scholar 

  36. Boorman GA (1999) Drinking water disinfection byproducts: review and approach to toxicity evaluation. Environ Health Perspect 107(Suppl 1):207–217

    Article  Google Scholar 

  37. Nieuwenhuijsen MJ, Martinez D, Grellier J, Bennett J, Best N, Iszatt N, Vrijheid M, Toledano MB (2009) Chlorination disinfection by-products in drinking water and congenital anomalies: review and meta-analyses. Environ Health Perspect 117:1486–1493. https://doi.org/10.1289/ehp.0900677

    Article  Google Scholar 

  38. Zyara A, Torvinen E, Veijalainen A-M, Heinonen-Tanski H (2016) The effect of UV and combined chlorine/UV treatment on coliphages in drinking water disinfection. Water 8:130. https://doi.org/10.3390/w8040130

    Article  Google Scholar 

  39. Poepping C, Beck SE, Wright H, Linden KG (2014) Evaluation of DNA damage reversal during medium-pressure UV disinfection. Water Res 56:181–189. https://doi.org/10.1016/j.watres.2014.02.043

    Article  Google Scholar 

  40. Kneissl M, Rass J (2016) III-nitride ultraviolet emitters : technology and applications, 1st edn. Springer, Cham

    Book  Google Scholar 

  41. Almeida PS, Camponogara D, Dalla Costa M, Braga H, Alonso JM (2015) Matching LED and driver life spans: a review of different techniques. IEEE Ind Electron Mag 9:36–47. https://doi.org/10.1109/MIE.2014.2352861

    Article  Google Scholar 

  42. Dhivya G, Subaashini K, Shamshudeen J, Rekha G, Pitchiah R (2013) Wirelessly controlled LED fixture with heat sink – design and implementation. In: 2013 I.E. international conference consumer electronics.  Berlin, Germany. IEEE, pp 506–507

    Google Scholar 

  43. U.S. Geological Survey (2017) Mineral commodity summaries 2017. U S Govt Printing Office. https://minerals.usgs.gov/minerals/pubs/mcs/

  44. Lee HS, Nam CW (1998) A study on the extraction of gallium from gallium arsenide scrap. Hydrometallurgy 49:125–133. https://doi.org/10.1016/S0304-386X(98)00016-4

    Article  Google Scholar 

  45. Wu X, Wu S, Qin W, Ma X, Niu Y, Lai S, Yang C, Jiao F, Ren L (2012) Reductive leaching of gallium from zinc residue. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2011.11.016

    Article  Google Scholar 

  46. Swain B, Mishra C, Kang L, Park K-S, Lee CG, Hong HS (2015) Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching. Environ Res 138:401–408. https://doi.org/10.1016/j.envres.2015.02.027

    Article  Google Scholar 

  47. Dodson JR, Hunt AJ, Parker HL, Yang Y, Clark JH (2012) Elemental sustainability: towards the total recovery of scarce metals. Chem Eng Process Process Intensif 51:69–78. https://doi.org/10.1016/j.cep.2011.09.008

    Article  Google Scholar 

  48. Lim S-R, Kang D, Ogunseitan OA, Schoenung JM (2013) Potential environmental impacts from the metals in incandescent, compact fluorescent lamp (CFL), and light-emitting diode (LED) bulbs. Environ Sci Technol 47:1040–1047. https://doi.org/10.1021/es302886m

    Article  Google Scholar 

  49. Lim S-R, Kang D, Ogunseitan OA, Schoenung JM (2011) Potential environmental impacts of light-emitting diodes (LEDs): metallic resources, toxicity, and hazardous waste classification. Environ Sci Technol 45:320–327. https://doi.org/10.1021/es101052q

    Article  Google Scholar 

  50. Kheyrandish A, Mohseni M, Taghipour F (2017) Development of a method for the characterization and operation of UV-LED for water treatment. Water Res 122:570–579. https://doi.org/10.1016/j.watres.2017.06.015

    Article  Google Scholar 

  51. Beck SE, Ryu H, Boczek LA, Cashdollar JL, Jeanis KM, Rosenblum JS, Lawal OR, Linden KG (2017) Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy. Water Res 109:207–216. https://doi.org/10.1016/j.watres.2016.11.024

    Article  Google Scholar 

  52. Oguma K, Rattanakul S, Bolton JR (2016) Application of UV light? Emitting diodes to adenovirus in water. J Environ Eng 142:04015082. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001061

    Article  Google Scholar 

  53. Oguma K, Kita R, Sakai H, Murakami M, Takizawa S (2013) Application of UV light emitting diodes to batch and flow-through water disinfection systems. Desalination 328:24–30. https://doi.org/10.1016/j.desal.2013.08.014

    Article  Google Scholar 

  54. Zhan L, Xia F, Ye Q, Xiang X, Xie B (2015) Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J Hazard Mater 299:388–394. https://doi.org/10.1016/j.jhazmat.2015.06.029

    Article  Google Scholar 

  55. Silvas FPC, Jiménez Correa MM, Caldas MPK, de Moraes VT, Espinosa DCR, Tenório JAS (2015) Printed circuit board recycling: physical processing and copper extraction by selective leaching. Waste Manag 46:503–510. https://doi.org/10.1016/j.wasman.2015.08.030

    Article  Google Scholar 

  56. Ghosh B, Ghosh MK, Parhi P, Mukherjee PS, Mishra BK (2015) Waste printed circuit boards recycling: an extensive assessment of current status. J Clean Prod 94:5–19. https://doi.org/10.1016/j.jclepro.2015.02.024

    Article  Google Scholar 

  57. Nam S-W, Jo B-I, Yoon Y, Zoh K-D (2014) Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere 95:156–165. https://doi.org/10.1016/j.chemosphere.2013.08.055

    Article  Google Scholar 

  58. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. https://doi.org/10.1016/j.envpol.2013.09.009

    Article  Google Scholar 

  59. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287. https://doi.org/10.1016/j.chemosphere.2013.07.059

    Article  Google Scholar 

  60. Verlicchi P, Al Aukidy M, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment? A review. Sci Total Environ 429:123–155. https://doi.org/10.1016/j.scitotenv.2012.04.028

    Article  Google Scholar 

  61. Bartrons M, Peñuelas J (2017) Pharmaceuticals and personal-care products in plants. Trends Plant Sci 22:194–203. https://doi.org/10.1016/j.tplants.2016.12.010

    Article  Google Scholar 

  62. Petrie B, Barden R, Kasprzyk-Hordern B (2015) A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res 72:3–27. https://doi.org/10.1016/j.watres.2014.08.053

    Article  Google Scholar 

  63. Geissen V, Mol H, Klumpp E, Umlauf G, Nadal M, van der Ploeg M, van de Zee SEATM, Ritsema CJ (2015) Emerging pollutants in the environment: a challenge for water resource management. Int Soil Water Conserv Res 3:57–65. https://doi.org/10.1016/j.iswcr.2015.03.002

    Article  Google Scholar 

  64. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F (2015) Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol 32:147–156. https://doi.org/10.1016/j.nbt.2014.01.001

    Article  Google Scholar 

  65. Derco J, Dudáš J, Valičková M, Šimovičová K, Kecskés J (2015) Removal of micropollutants by ozone based processes. Chem Eng Process Process Intensif 94:78–84. https://doi.org/10.1016/j.cep.2015.03.014

    Article  Google Scholar 

  66. Yu F, Li Y, Han S, Ma J (2016) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:365–385. https://doi.org/10.1016/j.chemosphere.2016.03.083

    Article  Google Scholar 

  67. Ahmed MB, Zhou JL, Ngo HH, Guo W (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130

    Article  Google Scholar 

  68. Chong MN, Jin B, Chow CWK, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    Article  Google Scholar 

  69. Pichat P (2013) Photocatalysis and water purification : from fundamentals to recent applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  70. Kisch H (2015) Semiconductor photocatalysis: Principles and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Germany. https://doi.org/10.1002/9783527673315

    Google Scholar 

  71. Dionysiou DD, Li Puma G, Ye J, Schneider J, Bahnemann D (2016) Photocatalysis: Applications (Energy and Environment Series). Royal Society of Chemistry, UK. https://doi.org/10.1039/9781782627104

    Google Scholar 

  72. Schneider J, Bahnemann D, Ye J, Li Puma G, Dionysiou DD (2016) Photocatalysis: Fundamentals and Perspectives (Energy and Environment Series). Royal Society of Chemistry, UK. https://doi.org/10.1039/9781782622338

    Google Scholar 

  73. Nowosielski R, Kania A, Spilka M (2007) Development of ecomaterials and materials technologies. J Achiev Mater Manuf Eng, 21, 27--30

    Google Scholar 

  74. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW (2017) Application of doped photocatalysts for organic pollutant degradation – a review. J Environ Manag 198:78–94. https://doi.org/10.1016/j.jenvman.2017.04.099

    Article  Google Scholar 

  75. Kumar SG, Rao KSRK, Kuang Q, Zhou X, Zhang XH, Xu T, Xie ZX, Zheng LS, Shan B, Xie C, Luo L, Cheng HM, Zhang WJ, Bello I, Lee ST (2015) Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv 5:3306–3351. https://doi.org/10.1039/C4RA13299H

    Article  Google Scholar 

  76. Dong P, Hou G, Xi X, Shao R, Dong F, Whangbo M-H, Cai QY, Ye J, Li H, Räsänen M, Ritala M, Leskelä M (2017) WO3 -based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ Sci Nano 4:539–557. https://doi.org/10.1039/C6EN00478D

    Article  Google Scholar 

  77. Lee KM, Lai CW, Ngai KS, Juan JC (2016) Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res 88:428–448. https://doi.org/10.1016/j.watres.2015.09.045

    Article  Google Scholar 

  78. Rajeshwar K, Ibanez JG (1997) Environmental electrochemistry: fundamentals and applications in pollution abatement. Academic, San Diego

    Google Scholar 

  79. Bora LV, Mewada RK (2017) Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review. Renew Sust Energ Rev 76:1393–1421. https://doi.org/10.1016/j.rser.2017.01.130

    Article  Google Scholar 

  80. Dahl M, Liu Y, Yin Y (2014) Composite titanium dioxide nanomaterials. Chem Rev 114:9853–9889. https://doi.org/10.1021/cr400634p

    Article  Google Scholar 

  81. Fattakhova-Rohlfing D, Zaleska A, Bein T (2014) Three-dimensional titanium dioxide nanomaterials. Chem Rev 114:9487–9558. https://doi.org/10.1021/cr500201c

    Article  Google Scholar 

  82. Medina-Ramírez I, Hernández-Ramírez A, Maya-Treviño ML (2015) Synthesis methods for photocatalytic materials. In: Photocatalytic semiconductor. Springer International Publishing, Cham, pp 69–102

    Google Scholar 

  83. Rochkind M, Pasternak S, Paz Y (2014) Using dyes for evaluating photocatalytic properties: a critical review. Molecules 20:88–110. https://doi.org/10.3390/molecules20010088

    Article  Google Scholar 

  84. Fernández-Ibáñez P, Blanco J, Malato S, Nieves FJ d l (2003) Application of the colloidal stability of TiO2 particles for recovery and reuse in solar photocatalysis. Water Res 37:3180–3188. https://doi.org/10.1016/S0043-1354(03)00157-X

    Article  Google Scholar 

  85. Zhang G, Zhang J, Wang L, Meng Q, Wang J (2012) Fouling mechanism of low-pressure hollow fiber membranes used in separating nanosized photocatalysts. J Membr Sci 389:532–543. https://doi.org/10.1016/j.memsci.2011.11.027

    Article  Google Scholar 

  86. Gjipalaj J, Alessandri I (2017) Easy recovery, mechanical stability, enhanced adsorption capacity and recyclability of alginate-based TiO2 macrobead photocatalysts for water treatment. J Environ Chem Eng 5:1763–1770. https://doi.org/10.1016/j.jece.2017.03.017

    Article  Google Scholar 

  87. Zhai Y, Yin Y, Liu X, Li Y, Wang J, Liu C, Bian G (2017) Novel magnetically separable BiVO4/Fe3O4 photocatalyst: synthesis and photocatalytic performance under visible-light irradiation. Mater Res Bull 89:297–306. https://doi.org/10.1016/j.materresbull.2017.01.011

    Article  Google Scholar 

  88. Zielińska-Jurek A, Bielan Z, Wysocka I, Strychalska J, Janczarek M, Klimczuk T (2017) Magnetic semiconductor photocatalysts for the degradation of recalcitrant chemicals from flow back water. J Environ Manag 195:157–165. https://doi.org/10.1016/j.jenvman.2016.06.056

    Article  Google Scholar 

  89. Batistela VR, Fogaça LZ, Fávaro SL, Caetano W, Fernandes-Machado NRC, Hioka N (2017) ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloid Surf A Physicochem Eng Asp 513:20–27. https://doi.org/10.1016/j.colsurfa.2016.11.023

    Article  Google Scholar 

  90. Liang H, Wang Z, Liao L, Chen L, Li Z, Feng J (2017) High performance photocatalysts: montmorillonite supported-nano TiO2 composites. Opt – Int J Light Electron Opt 136:44–51. https://doi.org/10.1016/j.ijleo.2017.02.018

    Article  Google Scholar 

  91. Tan P, Chen X, Wu L, Shang YY, Liu W, Pan J, Xiong X (2017) Hierarchical flower-like SnSe2 supported Ag3PO4 nanoparticles: towards visible light driven photocatalyst with enhanced performance. Appl Catal B Environ 202:326–334. https://doi.org/10.1016/j.apcatb.2016.09.033

    Article  Google Scholar 

  92. Montecchio F, Chinungi D, Lanza R, Engvall K (2017) Surface treatments of metal supports for photocatalysis applications. Appl Surf Sci 401:283–296. https://doi.org/10.1016/j.apsusc.2016.12.233

    Article  Google Scholar 

  93. Mohamed MA, Mutalib MA, Hir ZAM, Zain MFM, Mohamad AB, Minggu LJ, Awang NA, Salleh WNW (2017) An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.05.181

    Article  Google Scholar 

  94. Srikanth B, Goutham R, Badri Narayan R, Ramprasath A, Gopinath KP, Sankaranarayanan AR (2017) Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J Environ Manag 200:60–78. https://doi.org/10.1016/j.jenvman.2017.05.063

    Article  Google Scholar 

  95. Ismail AA, Bahnemann DW, Nosaka Y, Wu L, Wang X, Li J, Fu X, Miyamoto Z, Majima T, Bein T (2011) Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms. J Mater Chem 21:11686. https://doi.org/10.1039/c1jm10407a

    Article  Google Scholar 

  96. Mazierski P, Bajorowicz B, Grabowska E, Zaleska-Medynska A (2016) Photoreactor design aspects and modeling of light. Springer, Berlin/Heidelberg, pp 211–248

    Google Scholar 

  97. Sigel A, Sigel H, Sigel RKO, Royal Society of Chemistry (Great Britain) (2011) Metal ions in toxicology: effects, interactions, interdependencies. RSC Publishing, Cambridge

    Google Scholar 

  98. Litter MI, Quici N, Meichtry JM, Senn AM (2016) Chapter 2. Photocatalytic removal of metallic and other inorganic pollutants. In: Photocatalysis. Royal Society of Chemistry, Cambridge, pp 35–71

    Chapter  Google Scholar 

  99. Gonzalez V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157. https://doi.org/10.1016/j.envint.2014.06.019

    Article  Google Scholar 

  100. Gonzalez V, Vignati DAL, Pons M-N, Montarges-Pelletier E, Bojic C, Giamberini L (2015) Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organisms. Environ Pollut 199:139–147. https://doi.org/10.1016/j.envpol.2015.01.020

    Article  Google Scholar 

  101. Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 4:12–26. https://doi.org/10.5491/SHAW.2013.4.1.12

    Article  Google Scholar 

  102. Lui GY, Roser D, Corkish R, Ashbolt NJ, Stuetz R (2016) Point-of-use water disinfection using ultraviolet and visible light-emitting diodes. Sci Total Environ 553:626–635. https://doi.org/10.1016/j.scitotenv.2016.02.039

    Article  Google Scholar 

  103. Ibrahim MAS, MacAdam J, Autin O, Jefferson B (2014) Evaluating the impact of LED bulb development on the economic viability of ultraviolet technology for disinfection. Environ Technol 35:400–406. https://doi.org/10.1080/09593330.2013.829858

    Article  Google Scholar 

  104. Gmurek M, Olak-Kucharczyk M, Ledakowicz S (2017) Photochemical decomposition of endocrine disrupting compounds – a review. Chem Eng J 310:437–456. https://doi.org/10.1016/j.cej.2016.05.014

    Article  Google Scholar 

  105. Pirilä M, Saouabe M, Ojala S, Rathnayake B, Drault F, Valtanen A, Huuhtanen M, Brahmi R, Keiski RL (2015) Photocatalytic degradation of organic pollutants in wastewater. Top Catal 58:1085–1099. https://doi.org/10.1007/s11244-015-0477-7

    Article  Google Scholar 

  106. Fresno F, Portela R, Suárez S, Coronado JM, Yang P, Pijpers JJH, Nocera DG, Antonietti M, Yan Q, Zamkov M, Tendeloo G, Van Wu D, Cao A (2014) Photocatalytic materials: recent achievements and near future trends. J Mater Chem A 2:2863–2884. https://doi.org/10.1039/C3TA13793G

    Article  Google Scholar 

  107. Lee S-Y, Park S-J (2013) TiO2 photocatalyst for water treatment applications. J Ind Eng Chem 19:1761–1769. https://doi.org/10.1016/j.jiec.2013.07.012

    Article  Google Scholar 

  108. Li D, Shi W (2016) Recent developments in visible-light photocatalytic degradation of antibiotics. Chin J Catal 37:792–799. https://doi.org/10.1016/S1872-2067(15)61054-3

    Article  Google Scholar 

  109. Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ (2016) Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605:2–19. https://doi.org/10.1016/j.tsf.2015.12.064

    Article  Google Scholar 

  110. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  Google Scholar 

  111. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L (2016) Removal of pharmaceuticals and endocrine disrupting compounds from water by zinc oxide-based photocatalytic degradation: a review. Sustain Cities Soc 27:407–418. https://doi.org/10.1016/j.scs.2016.08.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Gonzalez-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gonzalez-Perez, A., Persson, K.M., Samuelson, L. (2019). Semiconductor Eco-materials for Water Treatment. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_170

Download citation

Publish with us

Policies and ethics