Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

TLR5 (Toll-Like Receptor 5)

  • Shaikh Muhammad AtifEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_639


Historical Background

Toll-like receptors (TLRs) are innate immune receptors that play an important role during infections and diseases. Upon recognition of specific microbe-associated molecular patterns (MAMPs) or self molecules, TLRs initiate signaling cascade that result in the production of pro-inflammatory cytokines, upregulation of co-stimulatory molecules, and molecules necessary for cross-priming of T-cell-dependent immune responses. TLR5 was first reported in humans (Rock et al. 1998), and its location was mapped on chromosome 1. Later in the year 2000, mouse TLR5 was identified and characterized using gene cloning approach (Sebastiani et al. 2000). Hayashi et al., in 2001, showed that innate immune response to bacterial flagellin is mediated through TLR5 (Hayashi et al. 2001). TLR5 recognizes monomeric form of flagella as its ligand and initiates signaling program leading to the...

This is a preview of subscription content, log in to check access.



I thank Prof. Stephen McSorley and Prof. Sangdun Choi for giving me this wonderful opportunity to contribute this book chapter in the second edition of encyclopedia of signaling molecules.


  1. Andersen-Nissen E, Smith KD, Bonneau R, Strong RK, Aderem A. A conserved surface on Toll-like receptor 5 recognizes bacterial flagellin. J Exp Med. 2007;204(2):393–403.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Atif SM, Uematsu S, Akira S, McSorley SJ. CD103-CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin. Mucosal Immunol. 2014;7(1):68–77.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Atif SM, Lee SJ, Li LX, Uematsu S, Akira S, Gorjestani S, Lin X, Schweighoffer E, Tybulewicz VL, McSorley SJ. Rapid CD4+ T-cell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. Eur J Immunol. 2015;45(2):513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS, Aygun-Sunar S, Veith J, Johnson C, Haderski GJ, Stanhope-Baker P, Allamaneni S, Skitzki J, Zeng M, Martsen E, Medvedev A, Scheblyakov D, Artemicheva NM, Logunov DY, Gintsburg AL, Naroditsky BS, Makarov SS, Gudkov AV. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist. Proc Natl Acad Sci USA. 2013;110(20):E1857–66.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chamberlain ND, Vila OM, Volin MV, Volkov S, Pope RM, Swedler W, Mandelin 2nd AM, Shahrara S. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. J Immunol. 2012;189(1):475–83.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cho KA, Ryu SJ, Park JS, Jang IS, Ahn JS, Kim KT, Park SC. Senescent phenotype can be reversed by reduction of caveolin status. J Biol Chem. 2003;278:27789–95.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Flores-Langarica A, Bobat S, Marshall JL, Yam-Puc JC, Cook CN, Serre K, Kingsley RA, Flores-Romo L, Uematsu S, Akira S, Henderson IR, Toellner KM, Cunningham AF. Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production. Eur J Immunol. 2015;45(8):2299–311.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Hardenberg G, Yao Y, Piccirillo CA, Levings MK, Steiner TS. Toll-like receptor 5 deficiency protects from wasting disease in a T cell transfer colitis model in T cell receptor-β-deficient mice. Inflamm Bowel Dis. 2012;18(1):85–93.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Hawn TR, Verbon A, Lettinga KD, Zhao LP, Li SS, Laws RJ, et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signaling and is associated with susceptibility to legionnaires’ disease. J Exp Med. 2003;198(10):1563–72.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Hawn TR, Scholes D, Li SS, Wang H, Yang Y, Roberts PL, Stapleton AE, Janer M, Aderem A, Stamm WE, Zhao LP, Hooton TM. Toll-like receptor polymorphisms and susceptibility to urinary tract infections in adult women. PLoS One. 2009;4(6):e5990.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099–103.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kaden SA, Kurig S, Vasters K, Hofmann K, Zaenker KS, Schmitz J, Winkels G. Enhanced dendritic cell-induced immune responses mediated by the novel C-type lectin receptor mDCAR1. J Immunol. 2009;183:5069–78.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kassem A, Henning P, Kindlund B, Lindholm C, Lerner UH. TLR5, a novel mediator of innate immunity-induced osteoclastogenesis and bone loss. FASEB J. 2015;29(11):4449–60.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.CrossRefGoogle Scholar
  17. Kim S-j, Chen Z, Chamberlain ND, Essani AB, Volin MV, Asif Amin M, Volkov S, Gravallese EM, Arami S, Swedler W, Lane NE, Mehta A, Sweiss N, Shahrara S. Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in RA and experimental arthritis. J Immunol. 2014;193(8):3902–13.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Letran SE, Lee SJ, Atif SM, Flores-Langarica A, Uematsu S, Akira S, et al. TLR5-deficient mice lack basal inflammatory and metabolic defects but exhibit impaired CD4 T cell responses to a flagellated pathogen. J Immunol. 2011a;186(9):5406–12.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Letran SE, Lee SJ, Atif SM, Uematsu S, Akira S, McSorley SJ. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity. Eur J Immunol. 2011b;41(1):29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Lim JS, Nguyen KC, Nguyen CT, Jang IS, Han JM, Fabian C, Lee SE, Rhee JH, Cho KA. Flagellin-dependent TLR5/caveolin-1 as a promising immune activator in immunosenescence. Aging Cell. 2015;14(5):907–15.PubMedPubMedCentralCrossRefGoogle Scholar
  21. McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo. J Immunol. 2002;169(7):3914–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. O’Donnell H, Pham OH, Li LX, Atif SM, Lee SJ, Ravesloot MM, Stolfi JL, Nuccio SP, Broz P, Monack DM, Baumler AJ, McSorley SJ. Toll-like receptor and inflammasome signals converge to amplify the innate bactericidal capacity of T helper 1 cells. Immunity. 2014;40(2):213–24.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, Hakimpour P, Gill KP, Nakaya HI, Yarovinsky F, Sartor RB, Gewirtz AT, Pulendran B. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination. Immunity. 2014;41(3):478–92.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Plackett TP, Boehmer ED, Faunce DE, Kovacs EJ. Aging and innate immune cells. J Leukoc Biol. 2004;76(2):291–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA. 1998;95(2):588–93.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A, Brencicova E, Escovar-Fadul X, Nguyen JM, Cadungog MG, Zhang R, Salatino M, Tchou J, Rabinovich GA, Conejo-Garcia JR. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27(1):27–40.PubMedCrossRefGoogle Scholar
  27. Sampath V, Garland JS, Le M, Patel AL, Konduri GG, Cohen JD, Simpson PM, Hines RN. A TLR5 (g.1174C > T) variant that encodes a stop codon (R392X) is associated with bronchopulmonary dysplasia. Pediatr Pulmonol. 2012;47(5):460–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Sebastiani G, Leveque G, Larivière L, Laroche L, Skamene E, Gros P, Malo D. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice. Genomics. 2000;64(3):230–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Singh V, Yeoh BS, Carvalho F, Gewirtz AT, Vijay-Kumar M. Proneness of TLR5 deficient mice to develop colitis is microbiota dependent. Gut Microbes. 2015;6(4):279–83.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Stanley MA. Imiquimod and the imidazoquinolones: mechanism of action and therapeutic potential. Clin Exp Dermatol. 2002;27(7):571–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Uematsu S, Akira S. Immune responses of TLR5(+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol. 2009;44(8):803–11.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010;328(5975):228–31.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol. 2002;168(2):554–61.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PediatricsNational Jewish HealthDenverUSA