Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Thomas G. HofmannEmail author
  • Eva Krieghoff-Henning
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_618


Historical Background

The homeodomain-interacting protein kinase 2 (HIPK2) was first described in 1998 as member of a novel protein kinase family (HIPK1-3) able to interact with homeodomain transcription factors of the NK-2 family and to enhance their repressor activity (Kim et al. 1998). Over the next years, it was shown that HIPK2 very likely is an autophosphorylating Ser/Thr kinase which localizes to nuclear speckles (see Fig. 1), and a number of interaction partners and putative targets such as the death receptor CD95, the corepressor Groucho, or a STAT3 peptide were identified. The HIPK2 genes were mapped to Chr. 7q32–42 in humans and to Chr. 6B in the mouse.
This is a preview of subscription content, log in to check access.


  1. An R, da Silva XG, Semplici F, Vakhshouri S, Hao HX, Rutter J, et al. Pancreatic and duodenal homeobox 1 (PDX1) phosphorylation at serine-269 is HIPK2-dependent and affects PDX1 subnuclear localization. Biochem Biophys Res Commun. 2010;399(2):155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bitomsky N, Hofmann TG. Apoptosis and autophagy: regulation of apoptosis by DNA damage signalling - roles of p53, p73 and HIPK2. FEBS J. 2009;276(21):6074–83.PubMedCrossRefGoogle Scholar
  3. Bon G, Di Carlo SE, Folgiero V, Avetrani P, Lazzari C, D’Orazi G, et al. Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression. Cancer Res. 2009;69(14):5978–86.PubMedCrossRefGoogle Scholar
  4. Boucher MJ, Simoneau M, Edlund H. The homeodomain-interacting protein kinase 2 regulates insulin promoter factor-1/pancreatic duodenal homeobox-1 transcriptional activity. Endocrinology. 2009;150(1):87–97.PubMedCrossRefGoogle Scholar
  5. Bracaglia G, Conca B, Bergo A, Rusconi L, Zhou Z, Greenberg ME, et al. Methyl-CpG-binding protein 2 is phosphorylated by homeodomain-interacting protein kinase 2 and contributes to apoptosis. EMBO Rep. 2009;10(12):1327–33.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol. 2009a;11(1):85–91.PubMedCrossRefGoogle Scholar
  7. Calzado MA, De La Vega L, Munoz E, Schmitz ML. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response. Cell Cycle. 2009b;8(11):1659–64.PubMedCrossRefGoogle Scholar
  8. Cin H, Meyer C, Herr R, Janzarik WG, Lambert S, Jones DT, et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol. 2011;121(6):763–74.PubMedCrossRefGoogle Scholar
  9. D’Orazi G, Cecchinelli B, Bruno T, Manni I, Higashimoto Y, Saito S, et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol. 2002;4(1):11–9.PubMedCrossRefGoogle Scholar
  10. de la Vega L, Frobius K, Moreno R, Calzado MA, Geng H, Schmitz ML. Control of nuclear HIPK2 localization and function by a SUMO interaction motif. Biochim Biophys Acta. 2010;1813(2):283–97.PubMedCrossRefGoogle Scholar
  11. Hattangadi SM, Burke KA, Lodish HF. Homeodomain-interacting protein kinase 2 plays an important role in normal terminal erythroid differentiation. Blood. 2010;115(23):4853–61.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW, Sokol SY. Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell. 2010;19(4):521–32.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML. Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol. 2002;4(1):1–10.PubMedCrossRefGoogle Scholar
  14. Inoue T, Kagawa T, Inoue-Mochita M, Isono K, Ohtsu N, Nobuhisa I, et al. Involvement of the Hipk family in regulation of eyeball size, lens formation and retinal morphogenesis. FEBS Lett. 2010;584(14):3233–8.PubMedCrossRefGoogle Scholar
  15. Isono K, Nemoto K, Li Y, Takada Y, Suzuki R, Katsuki M, et al. Overlapping roles for homeodomain-interacting protein kinases hipk1 and hipk2 in the mediation of cell growth in response to morphogenetic and genotoxic signals. Mol Cell Biol. 2006;26(7):2758–71.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Kim YH, Choi CY, Lee SJ, Conti MA, Kim Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J Biol Chem. 1998;273(40):25875–9.PubMedCrossRefGoogle Scholar
  17. Krieghoff-Henning E, Hofmann TG. HIPK2 and cancer cell resistance to therapy. Future Oncol. 2008;4(6):751–4.PubMedCrossRefGoogle Scholar
  18. Lee W, Andrews BC, Faust M, Walldorf U, Verheyen EM. Hipk is an essential protein that promotes notch signal transduction in the drosophila eye by inhibition of the global co-repressor Groucho. Dev Biol. 2009;325(1):263–72.PubMedCrossRefGoogle Scholar
  19. Li H, Costantini C, Scrable H, Weindruch R, Puglielli L. Egr-1 and Hipk2 are required for the TrkA to p75(NTR) switch that occurs downstream of IGF1-R. Neurobiol Aging. 2009;30(12):2010–20.PubMedCrossRefGoogle Scholar
  20. Link N, Chen P, Lu WJ, Pogue K, Chuong A, Mata M, et al. A collective form of cell death requires homeodomain interacting protein kinase. J Cell Biol. 2007;178(4):567–74.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Puca R, Nardinocchi L, Givol D, D’Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29(31):4378–87.PubMedCrossRefGoogle Scholar
  22. Rinaldo C, Prodosmo A, Siepi F, Soddu S. HIPK2: a multitalented partner for transcription factors in DNA damage response and development. Biochem Cell Biol. 2007;85(4):411–8.PubMedCrossRefGoogle Scholar
  23. Ritterhoff S, Farah CM, Grabitzki J, Lochnit G, Skurat AV, Schmitz ML. The WD40-repeat protein Han11 functions as a scaffold protein to control HIPK2 and MEKK1 kinase functions. EMBO J. 2010;29(22):3750–61.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Sakamoto K, Huang BW, Iwasaki K, Hailemariam K, Ninomiya-Tsuji J, Tsuji Y. Regulation of genotoxic stress response by homeodomain-interacting protein kinase 2 through phosphorylation of cyclic AMP response element-binding protein at serine 271. Mol Biol Cell. 2010;21(16):2966–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Sombroek D, Hofmann TG. How cells switch HIPK2 on and off. Cell Death Differ. 2009;16(2):187–94.PubMedCrossRefGoogle Scholar
  26. Trapasso F, Aqeilan RI, Iuliano R, Visone R, Gaudio E, Ciuffini L, et al. Targeted disruption of the murine homeodomain-interacting protein kinase-2 causes growth deficiency in vivo and cell cycle arrest in vitro. DNA Cell Biol. 2009;28(4):161–7.PubMedCrossRefGoogle Scholar
  27. Winter M, Sombroek D, Dauth I, Moehlenbrink J, Scheuermann K, Crone J, et al. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR. Nat Cell Biol. 2008;10(7):812–24.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Cellular Senescence (A210)German Cancer Research CenterHeidelbergGermany