Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

CD3ζ

  • Anna Morath
  • Sumit Deswal
  • Wolfgang W. A. Schamel
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_613

Synonyms

 ζ;  CD247;  TCRζ

Introduction

CD3ζ is a homodimer-forming type 1 transmembrane (TM) protein and is part of the T cell antigen receptor (TCR) complex along with TCRαβ, CD3γε, and CD3δε dimers expressed on the surface of T cells (Figs. 1 and 2). T cells are an important component of the vertebrate adaptive immune system that are activated via TCR by the peptides generated from infectious agents and presented on major histocompatibility complex (MHC) molecules on the surface of cells. CD3ζ possesses a small extracellular part, a TM region, and a long cytoplasmic part that contains three immunoreceptor tyrosine-based activation motifs (ITAMs), which correspond to the six tyrosines that get phosphorylated upon antigen binding to the extracellular part of TCRαβ. Phosphorylation subsequently activates several downstream signaling cascades. Hence, CD3ζ plays a vital role in the activation of a T cell. CD3ζ is also part of the pre-TCR in pre-T cells and the γδTCR in γδ T cells that...
This is a preview of subscription content, log in to check access.

References

  1. Aivazian D, Stern LJ. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat Struct Biol. 2000;7(11):1023–6.PubMedCrossRefGoogle Scholar
  2. Baniyash M. TCR zeta-chain downregulation: curtailing an excessive inflammatory immune response. Nat Rev Immunol. 2004;4(9):675–87.PubMedCrossRefGoogle Scholar
  3. Borroto A, Abia D, et al. Crammed signaling motifs in the T-cell receptor. Immunol Lett. 2014;161(1):113–7.PubMedCrossRefGoogle Scholar
  4. Call ME, Schnell JR, et al. The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T cell receptor. Cell. 2006;127(2):355–68.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Curnow SJ, Boyer C, et al. TCR-associated zeta-Fc epsilon RI gamma heterodimers on CD4-CD8- NK1.1+ T cells selected by specific class I MHC antigen. Immunity. 1995;3(4):427–38.PubMedCrossRefGoogle Scholar
  6. Dai H, Wang Y, et al. Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst. 2016;108(7).  https://doi.org/10.1093/jnci/djv439.
  7. Delgado P, Cubelos B, Calleja E, Martínez-Martín N, Ciprés A, Mérida I, Bellas C, Bustelo XR, Alarcón B. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nat Immunol. 2009;10(8):880–8.PubMedCrossRefGoogle Scholar
  8. Deng GM, Beltran J, et al. T cell CD3ζ deficiency enables multiorgan tissue inflammation. J Immunol. 2013;191(7):3563–7.PubMedPubMedCentralCrossRefGoogle Scholar
  9. D’Oro U, Munitic I, Chacko G, Karpova T, McNally J, Ashwell JD. Regulation of constitutive TCR internalization by the zeta-chain. J Immunol. 2002;169(11):6269–78.PubMedCrossRefGoogle Scholar
  10. Eleftheriadis T, Kartsios C, et al. Chronic inflammation and CD16+ natural killer cell zeta-chain downregulation in hemodialysis patients. Blood Purif. 2008;26(4):317–21.PubMedCrossRefGoogle Scholar
  11. Fernández-Arenas E, Calleja E, Martínez-Martín N, Gharbi SI, Navajas R, García-Medel N, Penela P, Alcamí A, Mayor F Jr, Albar JP, Alarcón B. β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism. EMBO J. 2014 Mar;33(6):559–77.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Gagnon E, Schubert DA, et al. Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3ε cytoplasmic domain. J Exp Med. 2012;209(13):2423–39.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hayes SM, Love PE. Distinct structure and signaling potential of the gamma delta TCR complex. Immunity. 2002;16(6):827–38.PubMedCrossRefGoogle Scholar
  14. Holst J, Wang H, et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat Immunol. 2008;9(6):658–66.PubMedCrossRefGoogle Scholar
  15. Kersh EN, Shaw AS, et al. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science. 1998;281(5376):572–5.PubMedCrossRefGoogle Scholar
  16. Lanier LL, Yu G, et al. Co-association of CD3 zeta with a receptor (CD16) for IgG Fc on human natural killer cells. Nature. 1989;342(6251):803–5.PubMedCrossRefGoogle Scholar
  17. Lee MS, Glassman CR, et al. A mechanical switch couples T cell receptor triggering to the cytoplasmic juxtamembrane regions of CD3ζζ. Immunity. 2015;43(2):227–39.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Louveau A, Angibaud J, et al. Impaired spatial memory in mice lacking CD3ζ is associated with altered NMDA and AMPA receptors signaling independent of T-cell deficiency. J Neurosci. 2013;33(47):18672–85.PubMedCrossRefGoogle Scholar
  19. Malissen B. An evolutionary and structural perspective on T cell antigen receptor function. Immunol Rev. 2003;191:7–191.PubMedCrossRefGoogle Scholar
  20. Malissen M, Gillet A, et al. T cell development in mice lacking the CD3-zeta/eta gene. EMBO J. 1993;12(11):4347–55.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Martín-Cófreces NB, Baixauli F, López MJ, Gil D, Monjas A, Alarcón B, Sánchez-Madrid F. End-binding protein 1 controls signal propagation from the T cell receptor. EMBO J. 2012 Nov;31(21):4140–52.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Minguet S, Schamel WWA. A permissive geometry model for TCR-CD3 activation. Trends Biochem Sci. 2008;33(2):51–7.PubMedCrossRefGoogle Scholar
  23. Minguet S, Swamy M, et al. The short length of the extracellular domain of zeta is crucial for T cell antigen receptor function. Immunol Lett. 2008;116(2):195–202.PubMedCrossRefGoogle Scholar
  24. Molnár E, Swamy M, et al. Cholesterol and sphingomyelin drive ligand-independent T-cell antigen receptor nanoclustering. J Biol Chem. 2012;287(51):42664–74.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Nambiar MP, Enyedy EJ, et al. Polymorphisms/mutations of TCR-zeta-chain promoter and 3′ untranslated region and selective expression of TCR zeta-chain with an alternatively spliced 3′ untranslated region in patients with systemic lupus erythematosus. J Autoimmun. 2001;16(2):133–42.PubMedCrossRefGoogle Scholar
  26. Ohno H, Saito T. CD3 zeta and eta chains are produced by alternative splicing from a common gene. Int Immunol. 1990;2(11):1117–9.PubMedCrossRefGoogle Scholar
  27. Ohno H, Aoe T, et al. Developmental and functional impairment of T cells in mice lacking CD3 zeta chains. EMBO J. 1993;12(11):4357–66.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Pitcher LA, Mathis MA, et al. Selective expression of the 21-kilodalton tyrosine-phosphorylated form of TCR zeta promotes the emergence of T cells with autoreactive potential. J Immunol. 2005a;174(10):6071–9.PubMedCrossRefGoogle Scholar
  29. Pitcher LA, Mathis MA, et al. The CD3 gamma epsilon/delta epsilon signaling module provides normal T cell functions in the absence of the TCR zeta immunoreceptor tyrosine-based activation motifs. Eur J Immunol. 2005b;35(12):3643–54.PubMedCrossRefGoogle Scholar
  30. Proust R, Bertoglio J, et al. The adaptor protein SAP directly associates with CD3ζ chain and regulates T cell receptor signaling. PLoS One. 2012;7(8):e43200.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Rieux-Laucat F, Hivroz C, et al. Inherited and somatic CD3zeta mutations in a patient with T-cell deficiency. N Engl J Med. 2006;354(18):1913–21.PubMedCrossRefGoogle Scholar
  32. Samelson LE, Harford JB, et al. Identification of the components of the murine T cell antigen receptor complex. Cell. 1985;43(1):223–31.PubMedCrossRefGoogle Scholar
  33. Schamel WW, Alarcón B. Organization of the resting TCR in nanoscale oligomers. Immunol Rev. 2013;251(1):13–20.PubMedCrossRefGoogle Scholar
  34. Schamel WW, Arechaga I, et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med. 2005;202(4):493–202.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Shi X, Bi Y, et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature. 2013;493(7430):111–5.PubMedCrossRefGoogle Scholar
  36. Swamy M, Beck-Garcia K, et al. A cholesterol-based allostery model of T cell receptor phosphorylation. Immunity. 2016;44(5):1091–101.PubMedCrossRefGoogle Scholar
  37. Takeuchi T, Suzuki K. CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients. Rheumatology (Oxford). 2013;52(9):1551–5.CrossRefGoogle Scholar
  38. Takeuchi T, Tsuzaka K, et al. TCR zeta chain lacking exon 7 in two patients with systemic lupus erythematosus. Int Immunol. 1998;10(7):911–21.PubMedCrossRefGoogle Scholar
  39. Taylor DD, Sullivan SA, et al. Modulation of T-cell CD3-zeta chain expression during normal pregnancy. J Reprod Immunol. 2002;54(1–2):15–31.PubMedCrossRefGoogle Scholar
  40. van Oers NS, Tohlen B, et al. The 21- and 23-kD forms of TCR zeta are generated by specific ITAM phosphorylations. Nat Immunol. 2000;1(4):322–8.PubMedCrossRefGoogle Scholar
  41. Wang J, Yi L, et al. Lack of association of the CD247 SNP rs2056626 with systemic sclerosis in Han Chinese. Open Rheumatol J. 2014;8:43–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Xu HP, Chen H, et al. The immune protein CD3zeta is required for normal development of neural circuits in the retina. Neuron. 2010;65(4):503–15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Yudushkin IA, Vale RD. Imaging T-cell receptor activation reveals accumulation of tyrosine-phosphorylated CD3{zeta} in the endosomal compartment. Proc Natl Acad Sci USA. 2010;107(51):22128–33.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anna Morath
    • 1
    • 2
    • 3
    • 4
  • Sumit Deswal
    • 1
    • 5
    • 6
  • Wolfgang W. A. Schamel
    • 1
    • 2
    • 3
  1. 1.Department of Immunology, Institute for Biology IIIUniversity of FreiburgFreiburgGermany
  2. 2.Centre for Biological Signaling Studies (BIOSS)University of FreiburgFreiburgGermany
  3. 3.Centre of Chronic Immunodeficiency (CCI)University Medical Center Freiburg and University of FreiburgFreiburgGermany
  4. 4.Spemann Graduate School of Biology and MedicineUniversity of FreiburgFreiburgGermany
  5. 5.Max Planck Institute of ImmunobiologyFreiburgGermany
  6. 6.Research Institute of Molecular PathologyViennaAustria