Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Siân-Eleri Owens
  • Salman Tamaddon-Jahromi
  • Venkateswarlu KanamarlapudiEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_611


Historical Background

Small GTPases of the Ras superfamily are binary switches that, by cycling between active GTP-bound and inactive GDP-bound conformations, regulate a wide variety of cellular and developmental events. They are grouped based on the sequence homology and cellular functions into five families: Ras, Rho, Ran, Rab, and ARF. The Rho and ARF family small GTPases are well established as regulators of cellular actin rearrangements and vesicular trafficking (Bos et al. 2007). Small GTPases are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of small GTPase-bound GDP to GTP, whereas GTPase-activating proteins (GAPs) inactivate small GTPases by stimulating hydrolysis of the small GTPase-bound GTP to GDP (Bos et al. 2007). In general, each small GTPase family has its specific GEFs...

This is a preview of subscription content, log in to check access.


  1. Bao H, Li F, Wang C, Wang N, Jiang Y, Tang Y, et al. Structural basis for the specific recognition of RhoA by the dual GTPase-activating protein ARAP3. J Biol Chem. 2016;291:16709–19.  https://doi.org/10.1074/jbc.M116.736140.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boato F, Hendrix S, Huelsenbeck SC, Hofmann F, Grosse G, Djalali S, et al. C3 peptide enhances recovery from spinal cord injury by improved regenerative growth of descending fiber tracts. J Cell Sci. 2010;123:1652–62.  https://doi.org/10.1242/jcs.066050.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77.  https://doi.org/10.1016/j.cell.2007.05.018.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Craig HE, Coadwell J, Guillou H, Vermeren S. ARAP3 binding to phosphatidylinositol-(3,4,5)-trisphosphate depends on N-terminal tandem PH domains and adjacent sequences. Cell Signal. 2010;22:257–64.  https://doi.org/10.1016/j.cellsig.2009.09.025.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gambardella L, Anderson KE, Jakus Z, Kovács M, Voigt S, Hawkins PT, et al. Phosphoinositide 3-OH kinase regulates integrin-dependent processes in neutrophils by signaling through its effector ARAP3. J Immunol. 2013;190:381–91.  https://doi.org/10.4049/jimmunol.1201330. (Baltimore, Md : 1950)CrossRefPubMedPubMedCentralGoogle Scholar
  6. Gambardella L, Anderson KE, Nussbaum C, Segonds-Pichon A, Margarido T, Norton L, et al. The GTPase-activating protein ARAP3 regulates chemotaxis and adhesion-dependent processes in neutrophils. Blood. 2011;118:1087–98.  https://doi.org/10.1182/blood-2010-10-312959.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gambardella L, Hemberger M, Hughes B, Zudaire E, Andrews S, Vermeren S. PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis. Sci Signal. 2010;3:ra76.  https://doi.org/10.1126/scisignal.2001026.CrossRefPubMedPubMedCentralGoogle Scholar
  8. I ST, Nie Z, Stewart A, Najdovska M, NE H, H H, et al. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci. 2004;117:6071–84.  https://doi.org/10.1242/jcs.01526.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Jeon CY, Kim HJ, Lee JY, Kim JB, Kim SC, Park JB. p190RhoGAP and Rap-dependent RhoGAP (ARAP3) inactivate RhoA in response to nerve growth factor leading to neurite outgrowth from PC12 cells. Exp Mol Med. 2010a;42:335–44.  https://doi.org/10.3858/emm.2010.42.5.035.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jeon CY, Kim HJ, Morii H, Mori N, Settleman J, Lee JY, et al. Neurite outgrowth from PC12 cells by basic fibroblast growth factor (bFGF) is mediated by RhoA inactivation through p190RhoGAP and ARAP3. J Cell Physiol. 2010b;224:786–94.  https://doi.org/10.1002/jcp.22184.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jeon CY, Moon MY, Kim JH, Kim HJ, Kim JG, Li Y, et al. Control of neurite outgrowth by RhoA inactivation. J Neurochem. 2012;120:684–98.  https://doi.org/10.1111/j.1471-4159.2011.07564.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kahn RA, Bruford E, Inoue H, Logsdon Jr JM, Nie Z, Premont RT, et al. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 2008;182:1039–44.  https://doi.org/10.1083/jcb.200806041.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Kartopawiro J, Bower NI, Karnezis T, Kazenwadel J, Betterman KL, Lesieur E, et al. Arap3 is dysregulated in a mouse model of hypotrichosis-lymphedema-telangiectasia and regulates lymphatic vascular development. Hum Mol Genet. 2014;23:1286–97.  https://doi.org/10.1093/hmg/ddt518.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kirsch KH, Georgescu MM, Ishimaru S, Hanafusa H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Natl Acad Sci USA. 1999;96:6211–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Kowanetz K, Husnjak K, Holler D, Kowanetz M, Soubeyran P, Hirsch D, et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol Biol Cell. 2004;15:3155–66.  https://doi.org/10.1091/mbc.E03.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Krugmann S. ARAP3 is a PI3K- and Rap-regulated GAP for RhoA. Curr Biol. 2004;14:1380–4. doi:10.1016/j.Google Scholar
  17. Krugmann S, Anderson KE, Ridley SH, Risso N, McGregor A, Coadwell J, et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol Cell. 2002;9:95–108.  https://doi.org/10.1016/S1097-2765(02)00434-3.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Krugmann S, Andrews S, Stephens L, Hawkins PT. ARAP3 is essential for formation of lamellipodia after growth factor stimulation. J Cell Sci. 2006;119:425–32.  https://doi.org/10.1242/jcs.02755.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Leone M, Cellitti J, Pellecchia M. The Sam domain of the lipid phosphatase Ship2 adopts a common model to interact with Arap3-Sam and EphA2-Sam. BMC Struct Biol. 2009;9:59.  https://doi.org/10.1186/1472-6807-9-59.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lu Q, Wei W, Kowalski PE, Chang ACY, Cohen SN. EST-based genome-wide gene inactivation identifies ARAP3 as a host protein affecting cellular susceptibility to anthrax toxin. Proc Natl Acad Sci USA. 2004;101:17246–51.  https://doi.org/10.1073/pnas.0407794101.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mercurio FA, Marasco D, Pirone L, Scognamiglio PL, Pedone EM, Pellecchia M, et al. Heterotypic Sam-Sam association between Odin-Sam1 and Arap3-Sam: binding affinity and structural insights. Chembiochem. 2013;14:100–6.  https://doi.org/10.1002/cbic.201200592.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Moon MY, Kim HJ, Kim JG, Lee JY, Kim J, Kim SC, et al. Small GTPase Rap1 regulates cell migration through regulation of small GTPase RhoA activity in response to transforming growth factor-??1. J Cell Physiol. 2013;228:2119–26.  https://doi.org/10.1002/jcp.24383.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Nandy D, Asmann YW, Mukhopadhyay D, Basu A. Role of AKT-glycogen synthase kinase axis in monocyte activation in human beings with and without type 2 diabetes. J Cell Mol Med. 2010;14:1396–407.  https://doi.org/10.1111/j.1582-4934.2009.00900.x.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Raaijmakers JH, Deneubourg L, Rehmann H, de Koning J, Zhang Z, Krugmann S, et al. The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell Signal. 2007;19:1249–57.  https://doi.org/10.1016/j.cellsig.2006.12.015.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Santy LC, Casanova JE. GTPase signaling: bridging the GAP between ARF and Rho. Curr Biol. 2002;12:R360–2.PubMedCrossRefGoogle Scholar
  26. Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One. 2014;9:1–21.  https://doi.org/10.1371/journal.pone.0116107.CrossRefGoogle Scholar
  27. Stacey TTI, Nie Z, Stewart A, Najdovska M, Hall NE, He H, et al. ARAP3 is transiently tyrosine phosphorylated in cells attaching to fibronectin and inhibits cell spreading in a RhoGAP-dependent manner. J Cell Sci. 2004;117:6071–84.  https://doi.org/10.1242/jcs.01526.CrossRefGoogle Scholar
  28. Wu B, Wang F, Zhang J, Zhang Z, Qin L, Peng J, et al. Identification and structural basis for a novel interaction between Vav2 and Arap3. J Struct Biol. 2012;180:84–95.  https://doi.org/10.1016/j.jsb.2012.06.011.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yagi R, Tanaka M, Sasaki K, Kamata R, Nakanishi Y, Kanai Y, et al. ARAP3 inhibits peritoneal dissemination of scirrhous gastric carcinoma cells by regulating cell adhesion and invasion. Oncogene. 2011;30:1413–21.  https://doi.org/10.1038/onc.2010.522.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Yu C, Rafiq NBM, Krishnasamy A, Hartman KL, Jones GE, Bershadsky AD, et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 2013;5:1456–68.  https://doi.org/10.1016/j.celrep.2013.10.040.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Siân-Eleri Owens
    • 1
  • Salman Tamaddon-Jahromi
    • 1
  • Venkateswarlu Kanamarlapudi
    • 1
    Email author
  1. 1.Institute of Life Science 1, School of MedicineSwansea UniversitySwanseaUK