Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Constance E. RunyanEmail author
  • H. William Schnaper
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_598


Historical Background

The adaptor protein SARA was first identified as a novel serine protease-like molecule in human brain (Meckelein et al. 1998), and then later characterized as an important regulator of TGF-ß1 signal transduction. SARA interacts with both the type I and type II TGF-ß1 receptors (TßRI and TßRII), and contains a Smad-binding domain (SBD) as well as a double zinc finger FYVE domain that localizes SARA to endosomal subcellular compartments (Tsukazaki et al. 1998). SARA also contains a region homologous to the active site of trypsin-like serine proteases (Meckelein et al. 1998) and a binding motif for the catalytic subunit of type 1 serine/threonine protein phosphatase (PP1c) (Bennett and Alphey 2002). Three alternatively spliced transcripts encoding distinct isoforms have been found for this gene (Fig. 1).
This is a preview of subscription content, log in to check access.


  1. Benmerah A. Endocytosis: signaling from endocytic membranes to the nucleus. Curr Biol. 2004;14:R314–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bennett D, Alphey L. PP1 binds Sara and negatively regulates Dpp signaling in Drosophila melanogaster. Nat Genet. 2002;31(4):419–23.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bokel C, Schwabedissen A, Entchev E, Renaud O, Gonzalez-Gaitan M. Sara endosomes and the maintenance of Dpp signaling levels across mitosis. Science. 2006;314(5802):1135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002;13(10):2600–10.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-ß receptor signalling and turnover. Nat Cell Biol. 2003;5:410–21.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Gillette JM, Larochelle A, Dunbar CE, Lippincott-Schwartz J. Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nat Cell Biol. 2009;11(3):303–11.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Goto D, Nakajima H, Mori Y, Kurasawa K, Kitamura N, Iwamoto I. Interaction between Smad anchor for receptor activation and Smad3 is not essential for TGF-beta/Smad3-mediated signaling. Biochem Biophys Res Commun. 2001;281(5):1100–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Hayes S, Chawla A, Corvera S. TGF-ß receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. J Cell Biol. 2002;158(7):1239–49.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Itoh F, Divecha N, Brocks L, Oomen L, Janssen H, Clalfat J, et al. The FYVE domain in Smad anchor for receptor activation (SARA) is sufficient for localization of SARA in early endosomes and regulates TGF-ß/Smad signalling. Genes Cells. 2002;7:321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Lin H, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-ß signalling. Nature. 2004;431:205–11.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Liu C, Gaca MD, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem. 2003;278(13):11721–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Meckelein B, Marshall DC, Conn KJ, Pietropaolo M, Van Nostrand W, Abraham CR. Identification of a novel serine protease-like molecule in human brain. Brain Res Mol Brain Res. 1998;55(2):181–97.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Miaczynska M, Pelkmans L, Zerial M. Not just a sink: endosomes in control of signal transduction. Curr Opin Cell Biol. 2004;16(4):400–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, Sasaki Y, et al. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol. 2000;20(24):9346–55.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Mousavi SA, Malerod L, Berg T, Kjeken R. Clthrin-dependent endocytosis. Biochem J. 2004;377(Pt 1):1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Penheiter SG, Mitchell H, Garamszegi N, Edens M, Dore JJE, Leof EB. Internalization-dependent and -independent requirements for transforming growth factor ß receptor signaling via the Smad pathway. Mol Cell Biol. 2002;22(13):4750–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Piek E, Heldin CH, ten Dijke P. Specificity, diversity and regulation by TGF-ß superfamily signaling. FASEB J. 1999;13:2105–24.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Pohlers D, Beyer A, Koczan D, Wilhelm T, Thiesen HJ, Kinne RW. Constitutive upregulation of the transforming growth factor-beta pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther. 2007;9(3):R59.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Roberts AB, Sporn MB. The transforming growth factor-ßs. In: Sporn MB, Roberts AB, editors. Peptide growth factors and their receptors. Heidelberg: Springer; 1990. p. 419–72.CrossRefGoogle Scholar
  20. Runyan CE, Schnaper HW, Poncelet AC. The role of internalization in transforming growth factor beta1-induced Smad2 association with Smad anchor for receptor activation (SARA) and Smad2-dependent signaling in human mesangial cells. J Biol Chem. 2005;280(9):8300–8.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Runyan CE, Hayashida T, Hubchak S, Curley JF, Schnaper HW. Role of SARA (SMAD anchor for receptor activation) in maintenance of epithelial cell phenotype. J Biol Chem. 2009;284(37):25181–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Seachrist JL, Ferguson SSG. Regulation of G protein-coupled receptor endocytosis and trafficking by Rab GTPases. Life Sci. 2003;74(2–3):225–35.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Semlali A, Jacques E, Plante S, Biardel S, Milot J, Laviolette M, et al. TGF-beta suppresses EGF-induced MAPK signaling and proliferation in asthmatic epithelial cells. Am J Respir Cell Mol Biol. 2008;38(2):202–8.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Shi Y, Massague J. Mechanisms of TGF-ß signaling from the cell membrane to the nucleus. Cell. 2003;113:685–700.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao XJ. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol. 2004;164(2):291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Tang W, Ling G, Sun L, Peng Y, Liu Y, Liu H, et al. SARA expression in high glucose induced epithelium to mesenchymal transition of proximal tubule cells. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2010;35(12):1230–5.PubMedPubMedCentralGoogle Scholar
  27. Tao YY, Cui HY, Liu CH. Dynamic characteristics of SARA during liver fibrogenesis in rats. Zhong Gan Zang Bing Za Zhi. 2006;14(12):909–13.Google Scholar
  28. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998;95(6):779–91.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Xu L, Kang Y, Col S, Massague J. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFß signaling complexes in the cytoplasm and nucleus. Mol Cell. 2002;10:271–82.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of PediatricsNorthwestern UniversityChicagoUSA