Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Francisco M. Vega
  • Nicolas Reymond
  • Anne J. RidleyEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_59


Historical Background

RhoC was originally identified, together with its close homologs RhoA and RhoB, as a ras-related small GTPase (Madaule and Axel 1985). They together comprise the Rho subfamily of small GTPases characterized by their high homology within the group of Rho GTPases in vertebrates. The human RhoC gene maps to chromosome 1p13.1-p21. Human RhoA and RhoC are 93% similar at the protein level; divergence between the two proteins is mainly concentrated in the so-called variable region of the proteins, at the C-terminus. Orthologs of RhoC are present in all vertebrates and some invertebrate chordates including Ciona intestinalis, but only one Rho gene is present in the model organisms Drosophila melanogaster and Caenorhabditis elegans (Boureux et al. 2007). Following the discovery of RhoC, it was initially described to induce reorganization of the actin cytoskeleton and regulation of cell shape, attachment, and...
This is a preview of subscription content, log in to check access.


  1. Arthur WT, Ellerbroek SM, Der CJ, Burridge K, Wennerberg K. XPLN, a guanine nucleotide exchange factor for RhoA and RhoB, but not RhoC. J Biol Chem. 2002;277:42964–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bellovin DI, Simpson KJ, Danilov T, Maynard E, Rimm DL, Oettgen P, et al. Reciprocal regulation of RhoA and RhoC characterizes the EMT and identifies RhoC as a prognostic marker of colon carcinoma. Oncogene. 2006;25:6959–67.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007;129:865–77.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boureux A, Vignal E, Faure S, Fort P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol Biol Evol. 2007;24:203–16.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bravo-Cordero JJ, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J. A novel spatiotemporal RhoC activation pathway locally regulates cofilin activity at invadopodia. Curr Biol. 2011;21:635–44.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bravo-Cordero JJ, Hodgson L, Condeelis JS. Spatial regulation of tumor cell protrusions by RhoC. Cell Adhes Migr. 2014;8:263–7.CrossRefGoogle Scholar
  7. Chang GH, Lay AJ, Ting KK, Zhao Y, Coleman PR, Powter EE, et al. ARHGAP18: an endogenous inhibitor of angiogenesis, limiting tip formation and stabilizing junctions. Small GTPases. 2014;5:1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J. 1989;8:1087–92.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen Y, Yang Z, Meng M, Zhao Y, Dong N, Yan H, et al. Cullin mediates degradation of RhoA through evolutionarily conserved BTB adaptors to control actin cytoskeleton structure and cell movement. Mol Cell. 2009;35:841–55.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen S, Chen X, Xiu YL, Sun KX, Zhao Y. Inhibition of ovarian epithelial carcinoma tumorigenesis and progression by microRNA 106b mediated through the RhoC pathway. PLoS ONE. 2015a;10:e0125714.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen X, Chen S, Xiu YL, Sun KX, Zong ZH, Zhao Y. RhoC is a major target of microRNA-93-5P in epithelial ovarian carcinoma tumorigenesis and progression. Mol Cancer. 2015b;14:31.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406:532–5.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dietrich KA, Schwarz R, Liska M, Grass S, Menke A, Meister M, et al. Specific induction of migration and invasion of pancreatic carcinoma cells by RhoC, which differs from RhoA in its localisation and activity. Biol Chem. 2009;390:1063–77.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Ellerbroek SM, Wennerberg K, Burridge K. Serine phosphorylation negatively regulates RhoA in vivo. J Biol Chem. 2003;278:19023–31.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Faried A, Faried LS, Kimura H, Nakajima M, Sohda M, Miyazaki T, et al. RhoA and RhoC proteins promote both cell proliferation and cell invasion of human oesophageal squamous cell carcinoma cell lines in vitro and in vivo. Eur J Cancer. 2006;42:1455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol. 2009;11:1287–96.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Griner EM, Dancik GM, Costello JC, Owens C, Guin S, Edwards MG, et al. RhoC is an unexpected target of RhoGDI2 in prevention of lung colonization of bladder cancer. Mol Cancer Res. 2015;13:483–92.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R, et al. RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 2005;19:1974–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. He X, Qian Y, Cai H, Yang S, Cai J, Wang Z. RhoC is essential in TGF-beta1 induced epithelial-mesenchymal transition in cervical cancer cells. Oncol Lett. 2015;10:985–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol. 2016;17:496–510.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hoeppner LH, Sinha S, Wang Y, Bhattacharya R, Dutta S, Gong X, et al. RhoC maintains vascular homeostasis by regulating VEGF-induced signaling in endothelial cells. J Cell Sci. 2015;128:3556–68.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Hutchinson CL, Lowe PN, McLaughlin SH, Mott HR, Owen D. Differential binding of RhoA, RhoB, and RhoC to protein kinase C-related kinase (PRK) isoforms PRK1, PRK2, and PRK3: PRKs have the highest affinity for RhoB. Biochemistry. 2013;52:7999–8011.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Iiizumi M, Bandyopadhyay S, Pai SK, Watabe M, Hirota S, Hosobe S, et al. RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Res. 2008;68:7613–20.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Islam M, Sharma S, Teknos TN. RhoC regulates cancer stem cells in head and neck squamous cell carcinoma by overexpressing IL-6 and phosphorylation of STAT3. PLoS ONE. 2014;9:e88527.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jacquemet G, Humphries MJ. IQGAP1 is a key node within the small GTPase network. Small GTPases. 2013;4:199–207.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jiang L, Liu X, Kolokythas A, Yu J, Wang A, Heidbreder CE, et al. Downregulation of the Rho GTPase signaling pathway is involved in the microRNA-138-mediated inhibition of cell migration and invasion in tongue squamous cell carcinoma. Int J Cancer. 2010;127:505–12.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta. 2009;1796:91–8.PubMedPubMedCentralGoogle Scholar
  28. Kawata H, Kamiakito T, Omoto Y, Miyazaki C, Hozumi Y, Tanaka A. RhoC upregulation is correlated with reduced E-cadherin in human breast cancer specimens after chemotherapy and in human breast cancer MCF-7 cells. Horm Cancer. 2014;5:414–23.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kitzing TM, Wang Y, Pertz O, Copeland JW, Grosse R. Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene. 2010;29:2441–8.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R. The MLK-related kinase (MRK) is a novel RhoC effector that mediates lysophosphatidic acid (LPA)-stimulated tumor cell invasion. J Biol Chem. 2013;288:5364–73.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Lehman HL, Van Laere SJ, van Golen CM, Vermeulen PB, Dirix LY, van Golen KL. Regulation of inflammatory breast cancer cell invasion through Akt1/PKBalpha phosphorylation of RhoC GTPase. Mol Cancer Res. 2012;10:1306–18.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liao CG, Kong LM, Zhou P, Yang XL, Huang JG, Zhang HL, et al. miR-10b is overexpressed in hepatocellular carcinoma and promotes cell proliferation, migration and invasion through RhoC, uPAR and MMPs. J Transl Med. 2014;12:234.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Liu BL, Sun KX, Zong ZH, Chen S, Zhao Y. MicroRNA-372 inhibits endometrial carcinoma development by targeting the expression of the Ras homolog gene family member C (RhoC). Oncotarget. 2016;7:6649–64.PubMedPubMedCentralGoogle Scholar
  34. Lochhead PA, Wickman G, Mezna M, Olson MF. Activating ROCK1 somatic mutations in human cancer. Oncogene. 2010;29:2591–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Madaule P, Axel R. A novel ras-related gene family. Cell. 1985;41:31–40.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Merajver SD, Usmani SZ. Multifaceted role of Rho proteins in angiogenesis. J Mammary Gland Biol Neoplasia. 2005;10:291–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Patel A, Williams-Perez S, Peyton N, Reicks A, Buzick J, Farley J, et al. Arg188 drives RhoC membrane binding. Small GTPases. 2016:1–8. http://dx.doi.org/10.1080/21541248.2016.1205334.
  39. Paterson HF, Self AJ, Garrett MD, Just I, Aktories K, Hall A. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 1990;111:1001–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Paul D, Chanukuppa V, Reddy PJ, Taunk K, Adhav R, Srivastava S, et al. Global proteomic profiling identifies etoposide chemoresistance markers in non-small cell lung carcinoma. J Proteome. 2016;138:95–105.CrossRefGoogle Scholar
  41. Reymond N, Im JH, Garg R, Cox S, Soyer M, Riou P, et al. RhoC and ROCKs regulate cancer cell interactions with endothelial cells. Mol Oncol. 2015;9:1043–55.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ridley AJ. RhoA, RhoB and RhoC have different roles in cancer cell migration. J Microsc. 2013;251:242–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Rosenthal DT, Zhang J, Bao L, Zhu L, Wu Z, Toy K, et al. RhoC impacts the metastatic potential and abundance of breast cancer stem cells. PLoS ONE. 2012;7:e40979.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Schaefer A, Reinhard NR, Hordijk PL. Toward understanding RhoGTPase specificity: structure, function and local activation. Small GTPases. 2014;5:6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 2002;16:1587–609.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Spangler B, Kappelmann M, Schittek B, Meierjohann S, Vardimon L, Bosserhoff AK, et al. ETS-1/RhoC signaling regulates the transcription factor c-Jun in melanoma. Int J Cancer. 2012;130:2801–11.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sun HW, Tong SL, He J, Wang Q, Zou L, Ma SJ, et al. RhoA and RhoC -siRNA inhibit the proliferation and invasiveness activity of human gastric carcinoma by Rho/PI3K/Akt pathway. World J Gastroenterol. 2007;13:3517–22.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Tumur Z, Katebzadeh S, Guerra C, Bhushan L, Alkam T, Henson BS. RhoC mediates epidermal growth factor-stimulated migration and invasion in head and neck squamous cell carcinoma. Neoplasia. 2015;17:141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Unsal-Kacmaz K, Ragunathan S, Rosfjord E, Dann S, Upeslacis E, Grillo M, et al. The interaction of PKN3 with RhoC promotes malignant growth. Mol Oncol. 2012;6:284–98.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Vega FM, Ridley AJ. Rho GTPases in cancer cell biology. FEBS Lett. 2008;582:2093–101.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vega FM, Fruhwirth G, Ng T, Ridley AJ. RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol. 2011;193:655–65.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Wang W, Wu F, Fang F, Tao Y, Yang L. RhoC is essential for angiogenesis induced by hepatocellular carcinoma cells via regulation of endothelial cell organization. Cancer Sci. 2008;99:2012–8.PubMedPubMedCentralGoogle Scholar
  53. Wang Y, Li Z, Zhao X, Zuo X, Peng Z. miR-10b promotes invasion by targeting HOXD10 in colorectal cancer. Oncol Lett. 2016;12:488–94.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Wheeler AP, Ridley AJ. Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res. 2004;301:43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Wu M, ZF W, Rosenthal DT, Rhee EM, Merajver SD. Characterization of the roles of RHOC and RHOA GTPases in invasion, motility, and matrix adhesion in inflammatory and aggressive breast cancers. Cancer. 2010;116:2768–82.PubMedPubMedCentralCrossRefGoogle Scholar
  56. Wu Y, Chen YC, Sang JR, Xu WR. RhoC protein stimulates migration of gastric cancer cells through interaction with scaffold protein IQGAP1. Mol Med Rep. 2011;4:697–703.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Wu Y, Tao Y, Chen Y, Xu W. RhoC regulates the proliferation of gastric cancer cells through interaction with IQGAP1. PLoS ONE. 2012;7:e48917.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Xing F, Sharma S, Liu Y, Mo YY, Wu K, Zhang YY, et al. miR-509 suppresses brain metastasis of breast cancer cells by modulating RhoC and TNF-alpha. Oncogene. 2015;34:4890–900.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer. 2014;14:736–46.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Zawistowski JS, Sabouri-Ghomi M, Danuser G, Hahn KM, Hodgson L. A RhoC biosensor reveals differences in the activation kinetics of RhoA and RhoC in migrating cells. PLoS ONE. 2013;8:e79877.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Francisco M. Vega
    • 1
  • Nicolas Reymond
    • 1
  • Anne J. Ridley
    • 1
    Email author
  1. 1.Department of Medical Physiology and Biophysics, Instituto de Biomedicina de SevillaUniversidad de SevillaSevilleSpain