Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Monopolar Spindle 1 (Mps1)

  • Matthew L. H. Chu
  • Patrick A. Eyers
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_576

Synonyms

Historical Background

Mps1 was first identified in the budding yeast Saccharomyces cerevisiae and named for the monopolar spindles that form in the mps1 mutant strain (reviewed in Fisk et al. 2004). These spindles are generated as a result of the absence of spindle pole body (SPB) duplication; mutant yeast cells consequently undergo a “monopolar” mitosis. Four years later, the mps1 gene was shown to encode an essential dual-specificity protein kinase, and a fission yeast homolog, termed Mph1, was also identified in Schizosaccharomyces pombe (Fisk et al. 2004). Library screening with antibodies to phosphotyrosine also identified a human protein kinase termed TTK/PYT, and a mouse kinase termed Esk; these were later recognized as vertebrate Mps1 orthologs. In addition, Xenopus, zebrafish and Drosophila Mps1 orthologs have also been characterized (Fisk et al. 2004)....

This is a preview of subscription content, log in to check access.

References

  1. Araki Y, Gombos L, Migueleti SP, Sivashanmugam L, Antony C, Schiebel E. N-terminal regions of Mps1 kinase determine functional bifurcation. J Cell Biol. 2010;189:41–56.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA. 2001;98:13681–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bhonde MR, Hanski ML, Budczies J, Cao M, Gillissen B, Moorthy D, Simonetta F, Scherubl H, Truss M, Hagemeier C, Mewes HW, Daniel PT, Zeitz M, Hanski C. DNA damage-induced expression of p53 suppresses mitotic checkpoint kinase hMps1: the lack of this suppression in p53MUT cells contributes to apoptosis. J Biol Chem. 2006;281:8675–85.CrossRefPubMedGoogle Scholar
  5. Borysova MK, Cui Y, Snyder M, Guadagno TM. Knockdown of B-Raf impairs spindle formation and the mitotic checkpoint in human somatic cells. Cell Cycle. 2008;7:2894–901.CrossRefPubMedGoogle Scholar
  6. Bourhis E, Lingel A, Phung Q, Fairbrother WJ, Cochran AG. Phosphorylation of a borealin dimerization domain is required for proper chromosome segregation. Biochemistry. 2009;48:6783–93.CrossRefPubMedGoogle Scholar
  7. Chu ML, Chavas LM, Douglas KT, Eyers PA, Tabernero L. Crystal structure of the catalytic domain of the mitotic checkpoint kinase Mps1 in complex with SP600125. J Biol Chem. 2008;283:21495–500.CrossRefPubMedGoogle Scholar
  8. Chu ML, Lang Z, Chavas LM, Neres J, Fedorova OS, Tabernero L, Cherry M, Williams DH, Douglas KT, Eyers PA. Biophysical and X-ray crystallographic analysis of Mps1 kinase inhibitor complexes. Biochemistry. 2010;49:1689–701.CrossRefPubMedGoogle Scholar
  9. Colombo R, Caldarelli M, Mennecozzi M, Giorgini ML, Sola F, Cappella P, Perrera C, Depaolini SR, Rusconi L, Cucchi U, Avanzi N, Bertrand JA, Bossi RT, Pesenti E, Galvani A, Isacchi A, Colotta F, Donati D, Moll J. Targeting the mitotic checkpoint for cancer therapy with NMS-P715, an inhibitor of MPS1 kinase. Cancer Res. 2010;70:10255–64.CrossRefPubMedGoogle Scholar
  10. Cui Y, Guadagno TM. B-Raf(V600E) signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells. Oncogene. 2008;27:3122–33.CrossRefPubMedGoogle Scholar
  11. Cui Y, Cheng X, Zhang C, Zhang Y, Li S, Wang C, Guadagno TM. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases. J Biol Chem. 2010;285:32988–98.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Dorer RK, Zhong S, Tallarico JA, Wong WH, Mitchison TJ, Murray AW. A small-molecule inhibitor of Mps1 blocks the spindle-checkpoint response to a lack of tension on mitotic chromosomes. Curr Biol. 2005;15:1070–6.CrossRefPubMedGoogle Scholar
  13. Espeut J, Gaussen A, Bieling P, Morin V, Prieto S, Fesquet D, Surrey T, Abrieu A. Phosphorylation relieves autoinhibition of the kinetochore motor Cenp-E. Mol Cell. 2008;29:637–43.CrossRefPubMedGoogle Scholar
  14. Fisk HA, Winey M. The mouse Mps1p-like kinase regulates centrosome duplication. Cell. 2001;106:95–104.CrossRefPubMedGoogle Scholar
  15. Fisk HA, Mattison CP, Winey M. Human Mps1 protein kinase is required for centrosome duplication and normal mitotic progression. Proc Natl Acad Sci USA. 2003;100:14875–80.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fisk HA, Mattison CP, Winey M. A field guide to the Mps1 family of protein kinases. Cell Cycle. 2004;3:439–42.CrossRefPubMedGoogle Scholar
  17. Gilliland WD, Wayson SM, Hawley RS. The meiotic defects of mutants in the Drosophila mps1 gene reveal a critical role of Mps1 in the segregation of achiasmate homologs. Curr Biol. 2005;15(7):672.CrossRefPubMedGoogle Scholar
  18. Gilliland WD, Hughes SE, Cotitta JL, Takeo S, Xiang Y, Hawley RS. The multiple roles of mps1 in Drosophila female meiosis. PLoS Genet. 2007;3:e113.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Grimison B, Liu J, Lewellyn AL, Maller JL. Metaphase arrest by cyclin E-Cdk2 requires the spindle-checkpoint kinase Mps1. Curr Biol. 2006;16:1968–73.CrossRefPubMedGoogle Scholar
  20. Hardwick KG, Weiss E, Luca FC, Winey M, Murray AW. Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science. 1996;273:953–6.CrossRefPubMedGoogle Scholar
  21. Holinger EP, Old WM, Giddings Jr TH, Wong C, Yates III JR, Winey M. Budding yeast centrosome duplication requires stabilization of SPC29 via MPS1-mediated phosphorylation. J Biol Chem. 2009;284(19):12949–55.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Huang H, Hittle J, Zappacosta F, Annan RS, Hershko A, Yen TJ. Phosphorylation sites in BubR1 that regulate kinetochore attachment, tension, and mitotic exit. J Cell Biol. 2008;183:667–80.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Iwase T, Tanaka M, Suzuki M, Naito Y, Sugimura H, Kino I. Identification of protein-tyrosine kinase genes preferentially expressed in embryo stomach and gastric cancer. Biochem Biophys Res Commun. 1993;194:698–705.CrossRefPubMedGoogle Scholar
  24. Janssen A, Kops GJ, Medema RH. Elevating the frequency of chromosome mis-segregation as a strategy to kill tumor cells. Proc Natl Acad Sci USA. 2009;106:19108–13.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Jaspersen SL, Huneycutt BJ, Giddings Jr TH, Resing KA, Ahn NG, Winey M. Cdc28/Cdk1 regulates spindle pole body duplication through phosphorylation of Spc42 and Mps1. Dev Cell. 2004;7:263–74.CrossRefPubMedGoogle Scholar
  26. Jelluma N, Brenkman AB, McLeod I, Yates III JR, Cleveland DW, Medema RH, Kops GJ. Chromosomal instability by inefficient Mps1 auto-activation due to a weakened mitotic checkpoint and lagging chromosomes. PLoS One. 2008a;3:e2415.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Jelluma N, Brenkman AB, van den Broek NJ, Cruijsen CW, van Osch MH, Lens SM, Medema RH, Kops GJ. Mps1 phosphorylates Borealin to control Aurora B activity and chromosome alignment. Cell. 2008b;132:233–46.CrossRefPubMedGoogle Scholar
  28. Johnson H, Eyers CE, Eyers PA, Beynon RJ, Gaskell SJ. Rigorous determination of the stoichiometry of protein phosphorylation using mass spectrometry. J Am Soc Mass Spectrom. 2009;20:2211–20.CrossRefPubMedGoogle Scholar
  29. Jones MH, Huneycutt BJ, Pearson CG, Zhang C, Morgan G, Shokat K, Bloom K, Winey M. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol. 2005;15:160–5.CrossRefPubMedGoogle Scholar
  30. Kaelin Jr WG. The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer. 2005;5:689–98.CrossRefPubMedGoogle Scholar
  31. Kanai M, Ma Z, Izumi H, Kim SH, Mattison CP, Winey M, Fukasawa K. Physical and functional interaction between mortalin and Mps1 kinase. Genes Cells. 2007;12:797–810.PubMedGoogle Scholar
  32. Kang J, Chen Y, Zhao Y, Yu H. Autophosphorylation-dependent activation of human Mps1 is required for the spindle checkpoint. Proc Natl Acad Sci USA. 2007;104:20232–7.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kasbek C, Yang CH, Yusof AM, Chapman HM, Winey M, Fisk HA. Preventing the degradation of mps1 at centrosomes is sufficient to cause centrosome reduplication in human cells. Mol Biol Cell. 2007;18:4457–69.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Kasbek C, Yang CH, Fisk HA. Mps1 as a link between centrosomes and genomic instability. Environ Mol Mutagen. 2009;50(8):654–65.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kemmler S, Stach M, Knapp M, Ortiz J, Pfannstiel J, Ruppert T, Lechner J. Mimicking Ndc80 phosphorylation triggers spindle assembly checkpoint signalling. EMBO J. 2009;28:1099–110.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kops GJ, Foltz DR, Cleveland DW. Lethality to human cancer cells through massive chromosome loss by inhibition of the mitotic checkpoint. Proc Natl Acad Sci USA. 2004;101:8699–704.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kwiatkowski N, Jelluma N, Filippakopoulos P, Soundararajan M, Manak MS, Kwon M, Choi HG, Sim T, Deveraux QL, Rottmann S, Pellman D, Shah JV, Kops GJ, Knapp S, Gray NS. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat Chem Biol. 2010;6:359–68.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lan W, Cleveland DW. A chemical tool box defines mitotic and interphase roles for Mps1 kinase. J Cell Biol. 2010;190:21–4.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Leng M, Chan DW, Luo H, Zhu C, Qin J, Wang Y. MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability. Proc Natl Acad Sci USA. 2006;103:11485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lince-Faria M, Maffini S, Orr B, Ding Y, Claudia F, Sunkel CE, Tavares A, Johansen J, Johansen KM, Maiato H. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J Cell Biol. 2009;184:647–57.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA, Ahn NG, Winey M. Mps1 activation loop autophosphorylation enhances kinase activity. J Biol Chem. 2007;282:30553–61.CrossRefPubMedGoogle Scholar
  42. Montembault E, Dutertre S, Prigent C, Giet R. PRP4 is a spindle assembly checkpoint protein required for MPS1, MAD1, and MAD2 localization to the kinetochores. J Cell Biol. 2007;179:601–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Nihira K, Taira N, Miki Y, Yoshida K. TTK/Mps1 controls nuclear targeting of c-Abl by 14-3-3-coupled phosphorylation in response to oxidative stress. Oncogene. 2008;27:7285–95.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Niittymaki I, Gylfe A, Laine L, Laakso M, Lehtonen HJ, Kondelin J, Tolvanen J, Nousiainen K, Pouwels J, Jarvinen H, Nuorva K, Mecklin JP, Makinen M, Ristimaki A, Orntoft TF, Hautaniemi S, Karhu A, Kallio MJ, Aaltonen LA. High frequency of TTK mutations in microsatellite-unstable colorectal cancer and evaluation of their effect on spindle-assembly checkpoint. Carcinogenesis. 2011;32:305–11.CrossRefPubMedGoogle Scholar
  45. Palframan WJ, Meehl JB, Jaspersen SL, Winey M, Murray AW. Anaphase inactivation of the spindle checkpoint. Science. 2006;313:680–4.CrossRefPubMedGoogle Scholar
  46. Pandey R, Heeger S, Lehner CF. Rapid effects of acute anoxia on spindle kinetochore interactions activate the mitotic spindle checkpoint. J Cell Sci. 2007;120:2807–18.CrossRefPubMedGoogle Scholar
  47. Pinsky BA, Nelson CR, Biggins S. Protein phosphatase 1 regulates exit from the spindle checkpoint in budding yeast. Curr Biol. 2009;19:1182–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Poss KD, Nechiporuk A, Stringer KF, Lee C, Keating MT. Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1. Genes Dev. 2004;18:1527–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Schmidt M, Budirahardja Y, Klompmaker R, Medema RH. Ablation of the spindle assembly checkpoint by a compound targeting Mps1. EMBO Rep. 2005;6:866–72.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Shimogawa MM, Graczyk B, Gardner MK, Francis SE, White EA, Ess M, Molk JN, Ruse C, Niessen S, Yates III JR, Muller EG, Bloom K, Odde DJ, Davis TN. Mps1 phosphorylation of Dam1 couples kinetochores to microtubule plus ends at metaphase. Curr Biol. 2006;16:1489–501.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Stucke VM, Sillje HH, Arnaud L, Nigg EA. Human Mps1 kinase is required for the spindle assembly checkpoint but not for centrosome duplication. EMBO J. 2002;21:1723–32.PubMedPubMedCentralCrossRefGoogle Scholar
  52. Sun T, Yang X, Wang W, Zhang X, Xu Q, Zhu S, Kuchta R, Chen G, Liu X. Cellular abundance of Mps1 and the role of its carboxyl terminal tail in substrate recruitment. J Biol Chem. 2010;285:38730–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Swanton C, Marani M, Pardo O, Warne PH, Kelly G, Sahai E, Elustondo F, Chang J, Temple J, Ahmed AA, Brenton JD, Downward J, Nicke B. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell. 2007;11:498–512.CrossRefPubMedGoogle Scholar
  54. Tighe A, Staples O, Taylor S. Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J Cell Biol. 2008;181:893–901.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Tyler RK, Chu ML, Johnson H, McKenzie EA, Gaskell SJ, Eyers PA. Phosphoregulation of human Mps1 kinase. Biochem J. 2009;417:173–81.CrossRefPubMedGoogle Scholar
  56. Vanoosthuyse V, Hardwick KG. A novel protein phosphatase 1-dependent spindle checkpoint silencing mechanism. Curr Biol. 2009;19:1176–81.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Vigneron S, Prieto S, Bernis C, Labbe JC, Castro A, Lorca T. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell. 2004;15:4584–96.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Wang W, Yang Y, Gao Y, Xu Q, Wang F, Zhu S, Old W, Resing K, Ahn N, Lei M, Lui X. Structural and mechanistic insights into dMps1 Kinase Activation. J Cell Mol Med. 2009;13:1679–94.CrossRefPubMedGoogle Scholar
  59. Wei JH, Chou YF, Ou YH, Yeh YH, Tyan SW, Sun TP, Shen CY, Shieh SY. TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem. 2005;280:7748–57.CrossRefPubMedGoogle Scholar
  60. Winey M, Huneycutt BJ. Centrosomes and checkpoints: the MPS1 family of kinases. Oncogene. 2002;21:6161–9.CrossRefPubMedGoogle Scholar
  61. Xu Q, Zhu S, Wang W, Zhang X, Old W, Ahn N, Liu X. Regulation of kinetochore recruitment of two essential mitotic spindle checkpoint proteins by Mps1 phosphorylation. Mol Biol Cell. 2009;20:10–20.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Yeh YH, Huang YF, Lin TY, Shieh SY. The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene. 2009;28:1366–78.CrossRefPubMedGoogle Scholar
  63. Yin VP, Thomson JM, Thummel R, Hyde DR, Hammond SM, Poss KD. Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev. 2008;22:728–33.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Zhao Y, Chen RH. Mps1 phosphorylation by MAP kinase is required for kinetochore localization of spindle-checkpoint proteins. Curr Biol. 2006;16:1764–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Structural BiologyStanford University School of MedicineStanfordUSA
  2. 2.YCR Institute for Cancer StudiesUniversity of SheffieldSheffieldUK