Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PTPN3/PTPN4

  • Timothy J. Bauler
  • Philip D. King
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_535

Synonyms

Historical Background

A common event in cellular signal transduction pathways is the phosphorylation of proteins on tyrosine residues. Tyrosine phosphorylation is reversible. The forward reaction is mediated by protein tyrosine kinases. By contrast, the reverse reaction is performed by protein tyrosine phosphatases (PTP). The PTP family consists of 107 genes whose protein products are diverse in form and specificity (Alonso et al. 2004). PTPN3 and PTPN4 constitute two members of this family that were initially identified by PCR amplification using primers specific to conserved regions of the catalytic domain of canonical PTP. PTPN3 was initially cloned from a HeLa cell cDNA library, whereas PTPN4 was cloned from a megakaryoblastic cell line (Gu et al. 1991; Yang and Tonks 1991). PTPN3 and PTPN4 are 50% identical and 67% homologous at the amino acid level.

Structure and Expression Studies

PTPN3 and PTPN4 are cytosolic proteins that localize to the plasma...

This is a preview of subscription content, log in to check access.

References

  1. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711.CrossRefPubMedGoogle Scholar
  2. Arimura Y, Yagi J. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal. 2010;3(137):rs1.CrossRefPubMedGoogle Scholar
  3. Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD. Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol. 2007;178(6):3680–7.CrossRefPubMedGoogle Scholar
  4. Bauler TJ, Hendriks WJ, King PD. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE. 2008;3(12):e4014.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Chen KE, Lin SY, Wu MJ, Ho MR, Santhanam A, Chou CC, Meng TC, Wang AH. Reciprocal allosteric regulation of p38y and PTPN3 involves a PDZ domain-modulated complex formation. Sci Signal. 2014;7(347):ra98.CrossRefPubMedGoogle Scholar
  6. Gjorloff-Wingren A, Saxena M, Han S, Wang X, Alonso A, Renedo M, et al. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J Immunol. 2000;30(8):2412–21.CrossRefPubMedGoogle Scholar
  7. Gu MX, York JD, Warshawsky I, Majerus PW. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci USA. 1991;88(13):5867–71.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Han S, Williams S, Mustelin T. Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol. 2000;30(5):1318–25.CrossRefPubMedGoogle Scholar
  9. Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem. 2000;275(21):16167–73.CrossRefPubMedGoogle Scholar
  10. Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, et al. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70(7):2901–10.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Huai W, Song H, Wang L, Li B, Zhao J, Han L, Gao C, Jiang G, Zhang L, Zhao W. Phosphatase PTPN4 preferentially inhibits TRIF-dependent TLR4 pathway by dephosphorylating TRAM. J Immunol. 2015;194(9):4458–65.CrossRefPubMedGoogle Scholar
  12. Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, et al. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun. 2006;348(4):1455–62.CrossRefPubMedGoogle Scholar
  13. Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol. 2007;81(5):2231–9.CrossRefPubMedGoogle Scholar
  14. Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26(8):2269–78.CrossRefPubMedGoogle Scholar
  15. Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC. Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene. 2015;34(29):3791–803.CrossRefPubMedGoogle Scholar
  16. Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor. Oncotarget. 2015;6(15):13320–33.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Maisonneuve P, Caillet-Saguy C, Vaney MC, Bibi-Zainab E, Sawyer K, Raynal B, Haouz A, Delepierre M, Lafon M, Cordier F, Wolff N. Molecular basis of the interaction of the human protein tyrosine phosphatase non-receptor type 4 (PTPN4) with the mitogen-activated protein kinase p38y. J Biol Chem. 2016;291(32):16699–708.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F, et al. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol. 2003;17(11):2228–39. PubMedCrossRefPubMedGoogle Scholar
  19. Patrignani C, Magnone MC, Tavano P, Ardizzone M, Muzio V, Greco B, et al. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition. Behav Brain Funct. 2008;4:36. PubMedPubMedPubMedCentralCrossRefGoogle Scholar
  20. Patrignani C, Lafont DT, Muzio V, Greco B, Hooft van Huijsduijnen R, Zaratin PF. Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. J Inflamm. 2010;7:16. Lond.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, et al. Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. J Biol Chem. 2007;282(48):35405–15.CrossRefPubMedGoogle Scholar
  22. Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, et al. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal. 2010;3(105):ra5.CrossRefPubMedGoogle Scholar
  23. Sozio MS, Mathis MA, Young JA, Walchli S, Pitcher LA, Wrage PC, et al. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem. 2004;279(9):7760–9.CrossRefPubMedGoogle Scholar
  24. Suresh PS, Ma S, Migliaccio A, Chen G. Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at Tyr537. Mol Cancer Ther. 2014;13(1):230–8.CrossRefPubMedGoogle Scholar
  25. Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304(5674):1164–6.CrossRefPubMedGoogle Scholar
  26. Whited JL, Robichaux MB, Yang JC, Garrity PA. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development. 2007;134(1):43–53.CrossRefPubMedGoogle Scholar
  27. Williamson SL, Ellaway CJ, Peters GB, Pelka GJ, Tam PP, Christodoulou J. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype. Eur J Hum Genet. 2015;23(9):1171–5.CrossRefPubMedGoogle Scholar
  28. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.CrossRefPubMedGoogle Scholar
  29. Yang Q, Tonks NK. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci USA. 1991;88(14):5949–53.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Young JA, Becker AM, Medeiros JJ, Shapiro VS, Wang A, Farrar JD, et al. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol. 2008;45(14):3756–66.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem. 1997;272(43):27281–7.CrossRefPubMedGoogle Scholar
  32. Zhang SH, Liu J, Kobayashi R, Tonks NK. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 1999;274(25):17806–12.CrossRefPubMedGoogle Scholar
  33. Zhou J, Wan B, Shan J, Shi H, Li Y, Huo K. PTPN4 negatively regulates CrkI in human cell lines. Cell Mol Biol Lett. 2013;18(2):297–314.CrossRefPubMedGoogle Scholar
  34. Zhu C, Deng X, Wu J, Zhang J, Yang H, Fu S, Zhang Y, Han Y, Zou Y, Chen Z, Lin S. MicroRNA-183 promotes migration and invasion of CD133(+)/CD326(+) lung adenocarcinoma initiating cells via PTPN4 inhibition. Tumour Biol. 2016;37(8):11289–97.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical SciencesWestern Michigan University Homer Stryker M.D. School of MedicineKalamazooUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Michigan Medical SchoolAnn ArborUSA