Skip to main content

PTPN3/PTPN4

  • Reference work entry
  • First Online:
  • 53 Accesses

Synonyms

PTPH1; PTPMEG/PTPMEG1

Historical Background

A common event in cellular signal transduction pathways is the phosphorylation of proteins on tyrosine residues. Tyrosine phosphorylation is reversible. The forward reaction is mediated by protein tyrosine kinases. By contrast, the reverse reaction is performed by protein tyrosine phosphatases (PTP). The PTP family consists of 107 genes whose protein products are diverse in form and specificity (Alonso et al. 2004). PTPN3 and PTPN4 constitute two members of this family that were initially identified by PCR amplification using primers specific to conserved regions of the catalytic domain of canonical PTP. PTPN3 was initially cloned from a HeLa cell cDNA library, whereas PTPN4 was cloned from a megakaryoblastic cell line (Gu et al. 1991; Yang and Tonks 1991). PTPN3 and PTPN4 are 50% identical and 67% homologous at the amino acid level.

Structure and Expression Studies

PTPN3 and PTPN4 are cytosolic proteins that localize to the plasma...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711.

    Article  CAS  PubMed  Google Scholar 

  • Arimura Y, Yagi J. Comprehensive expression profiles of genes for protein tyrosine phosphatases in immune cells. Sci Signal. 2010;3(137):rs1.

    Article  CAS  PubMed  Google Scholar 

  • Bauler TJ, Hughes ED, Arimura Y, Mustelin T, Saunders TL, King PD. Normal TCR signal transduction in mice that lack catalytically active PTPN3 protein tyrosine phosphatase. J Immunol. 2007;178(6):3680–7.

    Article  CAS  PubMed  Google Scholar 

  • Bauler TJ, Hendriks WJ, King PD. The FERM and PDZ domain-containing protein tyrosine phosphatases, PTPN4 and PTPN3, are both dispensable for T cell receptor signal transduction. PLoS ONE. 2008;3(12):e4014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen KE, Lin SY, Wu MJ, Ho MR, Santhanam A, Chou CC, Meng TC, Wang AH. Reciprocal allosteric regulation of p38y and PTPN3 involves a PDZ domain-modulated complex formation. Sci Signal. 2014;7(347):ra98.

    Article  CAS  PubMed  Google Scholar 

  • Gjorloff-Wingren A, Saxena M, Han S, Wang X, Alonso A, Renedo M, et al. Subcellular localization of intracellular protein tyrosine phosphatases in T cells. Eur J Immunol. 2000;30(8):2412–21.

    Article  CAS  PubMed  Google Scholar 

  • Gu MX, York JD, Warshawsky I, Majerus PW. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci USA. 1991;88(13):5867–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han S, Williams S, Mustelin T. Cytoskeletal protein tyrosine phosphatase PTPH1 reduces T cell antigen receptor signaling. Eur J Immunol. 2000;30(5):1318–25.

    Article  CAS  PubMed  Google Scholar 

  • Hironaka K, Umemori H, Tezuka T, Mishina M, Yamamoto T. The protein-tyrosine phosphatase PTPMEG interacts with glutamate receptor delta 2 and epsilon subunits. J Biol Chem. 2000;275(21):16167–73.

    Article  CAS  PubMed  Google Scholar 

  • Hou SW, Zhi HY, Pohl N, Loesch M, Qi XM, Li RS, et al. PTPH1 dephosphorylates and cooperates with p38gamma MAPK to increase ras oncogenesis through PDZ-mediated interaction. Cancer Res. 2010;70(7):2901–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huai W, Song H, Wang L, Li B, Zhao J, Han L, Gao C, Jiang G, Zhang L, Zhao W. Phosphatase PTPN4 preferentially inhibits TRIF-dependent TLR4 pathway by dephosphorylating TRAM. J Immunol. 2015;194(9):4458–65.

    Article  CAS  PubMed  Google Scholar 

  • Jespersen T, Gavillet B, van Bemmelen MX, Cordonier S, Thomas MA, Staub O, et al. Cardiac sodium channel Na(v)1.5 interacts with and is regulated by the protein tyrosine phosphatase PTPH1. Biochem Biophys Res Commun. 2006;348(4):1455–62.

    Article  CAS  PubMed  Google Scholar 

  • Jing M, Bohl J, Brimer N, Kinter M, Vande Pol SB. Degradation of tyrosine phosphatase PTPN3 (PTPH1) by association with oncogenic human papillomavirus E6 proteins. J Virol. 2007;81(5):2231–9.

    Article  CAS  PubMed  Google Scholar 

  • Kina S, Tezuka T, Kusakawa S, Kishimoto Y, Kakizawa S, Hashimoto K, et al. Involvement of protein-tyrosine phosphatase PTPMEG in motor learning and cerebellar long-term depression. Eur J Neurosci. 2007;26(8):2269–78.

    Article  PubMed  Google Scholar 

  • Li MY, Lai PL, Chou YT, Chi AP, Mi YZ, Khoo KH, Chang GD, Wu CW, Meng TC, Chen GC. Protein tyrosine phosphatase PTPN3 inhibits lung cancer cell proliferation and migration by promoting EGFR endocytic degradation. Oncogene. 2015;34(29):3791–803.

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor. Oncotarget. 2015;6(15):13320–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve P, Caillet-Saguy C, Vaney MC, Bibi-Zainab E, Sawyer K, Raynal B, Haouz A, Delepierre M, Lafon M, Cordier F, Wolff N. Molecular basis of the interaction of the human protein tyrosine phosphatase non-receptor type 4 (PTPN4) with the mitogen-activated protein kinase p38y. J Biol Chem. 2016;291(32):16699–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasquali C, Curchod ML, Walchli S, Espanel X, Guerrier M, Arigoni F, et al. Identification of protein tyrosine phosphatases with specificity for the ligand-activated growth hormone receptor. Mol Endocrinol. 2003;17(11):2228–39. PubMed

    Article  CAS  PubMed  Google Scholar 

  • Patrignani C, Magnone MC, Tavano P, Ardizzone M, Muzio V, Greco B, et al. Knockout mice reveal a role for protein tyrosine phosphatase H1 in cognition. Behav Brain Funct. 2008;4:36. PubMed

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patrignani C, Lafont DT, Muzio V, Greco B, Hooft van Huijsduijnen R, Zaratin PF. Characterization of protein tyrosine phosphatase H1 knockout mice in animal models of local and systemic inflammation. J Inflamm. 2010;7:16. Lond.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pilecka I, Patrignani C, Pescini R, Curchod ML, Perrin D, Xue Y, et al. Protein-tyrosine phosphatase H1 controls growth hormone receptor signaling and systemic growth. J Biol Chem. 2007;282(48):35405–15.

    Article  CAS  PubMed  Google Scholar 

  • Prehaud C, Wolff N, Terrien E, Lafage M, Megret F, Babault N, et al. Attenuation of rabies virulence: takeover by the cytoplasmic domain of its envelope protein. Sci Signal. 2010;3(105):ra5.

    Article  CAS  PubMed  Google Scholar 

  • Sozio MS, Mathis MA, Young JA, Walchli S, Pitcher LA, Wrage PC, et al. PTPH1 is a predominant protein-tyrosine phosphatase capable of interacting with and dephosphorylating the T cell receptor zeta subunit. J Biol Chem. 2004;279(9):7760–9.

    Article  CAS  PubMed  Google Scholar 

  • Suresh PS, Ma S, Migliaccio A, Chen G. Protein-tyrosine phosphatase H1 increases breast cancer sensitivity to antiestrogens by dephosphorylating estrogen receptor at Tyr537. Mol Cancer Ther. 2014;13(1):230–8.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Shen D, Parsons DW, Bardelli A, Sager J, Szabo S, et al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science. 2004;304(5674):1164–6.

    Article  CAS  PubMed  Google Scholar 

  • Whited JL, Robichaux MB, Yang JC, Garrity PA. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development. 2007;134(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  • Williamson SL, Ellaway CJ, Peters GB, Pelka GJ, Tam PP, Christodoulou J. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype. Eur J Hum Genet. 2015;23(9):1171–5.

    Article  CAS  PubMed  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318(5853):1108–13.

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Tonks NK. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci USA. 1991;88(14):5949–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young JA, Becker AM, Medeiros JJ, Shapiro VS, Wang A, Farrar JD, et al. The protein tyrosine phosphatase PTPN4/PTP-MEG1, an enzyme capable of dephosphorylating the TCR ITAMs and regulating NF-kappaB, is dispensable for T cell development and/or T cell effector functions. Mol Immunol. 2008;45(14):3756–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang SH, Kobayashi R, Graves PR, Piwnica-Worms H, Tonks NK. Serine phosphorylation-dependent association of the band 4.1-related protein-tyrosine phosphatase PTPH1 with 14-3-3beta protein. J Biol Chem. 1997;272(43):27281–7.

    Article  CAS  PubMed  Google Scholar 

  • Zhang SH, Liu J, Kobayashi R, Tonks NK. Identification of the cell cycle regulator VCP (p97/CDC48) as a substrate of the band 4.1-related protein-tyrosine phosphatase PTPH1. J Biol Chem. 1999;274(25):17806–12.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wan B, Shan J, Shi H, Li Y, Huo K. PTPN4 negatively regulates CrkI in human cell lines. Cell Mol Biol Lett. 2013;18(2):297–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Deng X, Wu J, Zhang J, Yang H, Fu S, Zhang Y, Han Y, Zou Y, Chen Z, Lin S. MicroRNA-183 promotes migration and invasion of CD133(+)/CD326(+) lung adenocarcinoma initiating cells via PTPN4 inhibition. Tumour Biol. 2016;37(8):11289–97.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip D. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bauler, T.J., King, P.D. (2018). PTPN3/PTPN4. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_535

Download citation

Publish with us

Policies and ethics