Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Myosin I (Myo1)

  • Lynne M. Coluccio
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_529

Nomenclature

The nomenclature of myosins I is confusing, although there is general agreement in the naming of myosins I in vertebrates (Gillespie et al. 2001). The names used in vertebrates, however, do not correspond to those used in lower organisms. The following names have been used to refer to class I myosins:

In yeast: Myo3, Myo5

In Acanthamoeba: Myosin IA-C

In Dictyostelium: MyoA-F, K

In Caenorhabditis elegans: Myo1A or HUM-1; HUM-5

In Drosophila: Myo1A (Myo31DF, CG7438); Myo1B (Myo61F, CG9155)

In vertebrates: Myo1a-h; (MyoA-H in humans)
  • Myo1a (Brush border myosin I, 110-kDa-calmodulin complex)

  • Myo1b (myr 1, myosin-Iα, 130-kDa myosin I)

  • Myo1c (myr 2, myosin-Ιβ,110-kDa myosin I)

  • Myo1d (myr 4, myosin-Iγ, 105-kDa myosin I)

  • Myo1e (myr 3, human myosin-1C)

  • Myo1f

  • Myo1g

  • Myo1h

Historical Background

Myosin 1 is the largest of ∼35 different classes of proteins that comprise the myosin superfamily, a collection of actin-associated molecular motor proteins that use the energy from ATP...

This is a preview of subscription content, log in to check access.

References

  1. Adamek N, Coluccio LM, Geeves MA. Calcium sensitivity of the cross-bridge cycle of Myo1c, the adaptation motor of the inner ear. Proc Natl Acad Sci U S A. 2008;105:5710–5.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson BL, Boldogh I, Evangelista M, Boone C, Greene LA, Pon LA. The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol. 1998;141(6):1357–70.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Batters C, Arthur CP, Lin A, Porter J, Geeves MA, Milligan RA, et al. Myo1c is designed for the adaptation response in the inner ear. EMBO J. 2004;23:1433–40.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bement WM, Mooseker MS. TEDS rule: a molecular rationale for differential regulation of myosins by phosphorylation of the heavy chain head. Cell Motil Cytoskeleton. 1995;31(2):87–92.CrossRefPubMedGoogle Scholar
  5. Benesh AE, Nambiar R, McConnell RE, Mao S, Tabb DL, Tyska MJ. Differential localization and dynamics of class I myosins in the enterocyte microvillus. Mol Biol Cell. 2010;21(6):970–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bose A, Guilherme A, Robida SI, Nicoloro SM, Zhou QL, Jiang ZY, et al. Glucose transporter recycling in response to insulin is facilitated by myosin Myo1c. Nature. 2002;420(6917):821–4.CrossRefPubMedGoogle Scholar
  7. Brzeska H, Knaus UG, Wang ZY, Bokoch GM, Korn ED. p21-activated kinase has substrate specificity similar to Acanthamoeba myosin I heavy chain kinase and activates Acanthamoeba myosin I. Proc Natl Acad Sci U S A. 1997;94(4):1092–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Coluccio LM. Myosin I. Proteins Cell Reg. 2008;7:95–124.CrossRefGoogle Scholar
  9. Coluccio LM, Geeves MA. Transient kinetic analysis of the 130-kDa myosin I (myr 1 gene product) from rat liver: a myosin I designed for maintenance of tension? J Biol Chem. 1999;274:21575–80.CrossRefPubMedGoogle Scholar
  10. Cyr JL, Dumont RA, Gillespie PG. Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neurosci. 2002;22(7):2487–95.CrossRefPubMedGoogle Scholar
  11. El-Mezgueldi M, Bagshaw CR. The myosin family: biochemical and kientic properties. Proteins Cell Reg. 2008;7:55–93.CrossRefGoogle Scholar
  12. Gillespie PG, Albanesi JP, Bähler M, Bement WM, Berg JS, Burgess DR, et al. Myosin-I nomenclature. J Cell Biol. 2001;155(5):703–4.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hegan PS, Mermall V, Tilney LG, Mooseker MS. Roles for Drosophila melanogaster myosin 1B in maintenance of enterocyte brush-border structure and resistance to the bacterial pathogen Pseudomonas entomophila. Mol Biol Cell. 2007;18:4625–36.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hofmann WA, Vargas GM, Ramchandran R, Stojiljkovic L, Goodrich JA, de Lanerolle PA. Nuclear myosin I is necessary for the formation of the first phosphodiester bond during transcription initiation by RNA polymerase II. J Cell Biochem. 2006;99:1001–9.CrossRefPubMedGoogle Scholar
  15. Holt JR, Gillespie SKH, Provance DW, Shah K, Shokat KM, Corey DP, et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell. 2002;108(3):371–81.CrossRefPubMedGoogle Scholar
  16. Hozumi S, Maeda R, Taniguchi K, Kanai M, Shirakabe S, Sasamura T, et al. An unconventional myosin in Drosophila reverses the default handedness in visceral organs. Nature. 2006;440:798–802.CrossRefPubMedGoogle Scholar
  17. Huber LA, Fialka I, Paiha K, Hunziker W, Sacks DB, Bähler M, et al. Both calmodulin and the unconventional myosin Myr4 regulate membrane trafficking along the recycling pathway of MDCK cells. Traffic. 2000;1:494–503.CrossRefPubMedGoogle Scholar
  18. Jung G, Remmert K, Wu X, Volosky JM, Hammer 3rd JA. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J Cell Biol 2001;153(7):1479–1497.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kim SV, Flavell RA. Myosin I: from yeast to human. Cell Mol Life Sci. 2008;65:2128–37.CrossRefPubMedGoogle Scholar
  20. Kim SV, Mehal WZ, Dong X, Heinrich V, Pypaert M, Mellman I, et al. Modulation of cell adhesion and motility in the immune system by Myo1f. Science. 2006;314:136–9.CrossRefPubMedGoogle Scholar
  21. Kollmar M, Dürrwang U, Kliche W, Manstein DJ, Kull FJ. Crystal structure of the motor domain of a class-I myosin. EMBO J. 2002;21(11):2517–25.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Krendel M, Kim SV, Willinger T, Wang T, Kashgarian M, Flavell RA, et al. Disruption of Myosin 1e promotes podocyte injury. J Am Soc Nephrol. 2009;20(1):86–94.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Laakso JM, Lewis JH, Shuman H, Ostap EM. Myosin I can act as a molecular force sensor. Science. 2008;321(5885):133–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Nambiar R, McConnell RE, Tyska MJ. Control of cell membrane tension by myosin-I. Proc Natl Acad Sci U S A. 2009;106(29):11972–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Olety B, Wälte M, Honnert U, Schillers H, Bähler M. Myo1g is a haematopoietic specific myosin that localises to the plasma membrane and regulates cell elasticity. FEBS Lett. 2010;584:493–9.CrossRefPubMedGoogle Scholar
  26. Ostap EM, Pollard TD. Overlapping functions of myosin-I isoforms? [comment]. J Cell Biol. 1996;133(2):221–4.CrossRefPubMedGoogle Scholar
  27. Raposo G, Cordonnier MN, Tenza D, Menichi B, Dürrbach A, Louvard D, et al. Association of myosin I alpha with endosomes and lysosomes in mammalian cells. Mol Biol Cell. 1999;10(5):1477–94.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Sokac AM, Schietroma C, Gundersen CB, Bement WM. Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev Cell. 2006;11:629–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Spéder P, Ádám G, Noselli S. Type 1D unconventional myosin controls left-right asymmetry in Drosophila. Nature. 2006;440:803–7.CrossRefPubMedGoogle Scholar
  30. Veigel C, Coluccio LM, Jontes JD, Sparrow JC, Milligan RA, Molloy JE. The motor protein myosin-I produces its working stroke in two steps [see comments]. Nature. 1999;398(6727):530–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Boston Biomedical Research InstituteWatertownUSA