Skip to main content

SWI/SNF Chromatin Remodeling Complex

  • Reference work entry
  • First Online:
Book cover Encyclopedia of Signaling Molecules

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111(3):381–92.

    Article  PubMed  CAS  Google Scholar 

  • Angus-Hill ML, et al. A Rsc3/Rsc30 zinc cluster dimer reveals novel roles for the chromatin remodeler RSC in gene expression and cell cycle control. Mol Cell. 2001;7(4):741–51.

    Article  PubMed  CAS  Google Scholar 

  • Baetz KK, et al. The ctf13-30/CTF13 genomic haploinsufficiency modifier screen identifies the yeast chromatin remodeling complex RSC, which is required for the establishment of sister chromatid cohesion. Mol Cell Biol. 2004;24(3):1232–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barbaric S, Reinke H, Horz W. Multiple mechanistically distinct functions of SAGA at the PHO5 promoter. Mol Cell Biol. 2003;23(10):3468–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Batsche E, Yaniv M, Muchardt C. The human SWI/SNF subunit Brm is a regulator of alternative splicing. Nat Struct Mol Biol. 2006;13(1):22–9.

    Article  PubMed  CAS  Google Scholar 

  • Battaglioli E, et al. REST repression of neuronal genes requires components of the hSWI.SNF complex. J Biol Chem. 2002;277(43):41038–45.

    Article  PubMed  CAS  Google Scholar 

  • Bennett CB, et al. Genes required for ionizing radiation resistance in yeast. Nat Genet. 2001;29(4):426–34.

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR, et al. Two functionally distinct forms of the RSC nucleosome-remodeling complex, containing essential AT hook, BAH, and bromodomains. Mol Cell. 1999;4(5):715–23.

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, et al. Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol Cell Biol. 1997;17(6):3323–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carey M, Li B, Workman JL. RSC exploits histone acetylation to abrogate the nucleosomal block to RNA polymerase II elongation. Mol Cell. 2006;24(3):481–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chai B, et al. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005;19(14):1656–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corey LL, et al. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 2003;17(11):1392–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cosma MP, Tanaka T, Nasmyth K. Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell. 1999;97(3):299–311.

    Article  PubMed  CAS  Google Scholar 

  • de la Serna IL, Carlson KA, Imbalzano AN, Mammalian SWI. SNF complexes promote MyoD-mediated muscle differentiation. Nat Genet. 2001;27(2):187–90.

    Article  PubMed  CAS  Google Scholar 

  • Dey A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100(15):8758–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhalluin C, et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399(6735):491–6.

    Article  PubMed  CAS  Google Scholar 

  • Dilworth FJ, et al. ATP-driven chromatin remodeling activity and histone acetyltransferases act sequentially during transactivation by RAR/RXR In vitro. Mol Cell. 2000;6(5):1049–58.

    Article  PubMed  CAS  Google Scholar 

  • Du J, et al. Sth1p, a Saccharomyces cerevisiae Snf2p/Swi2p homolog, is an essential ATPase in RSC and differs from Snf/Swi in its interactions with histones and chromatin-associated proteins. Genetics. 1998;150(3):987–1005.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dunaief JL, et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell. 1994;79(1):119–30.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira H, Flaus A, Owen-Hughes T. Histone modifications influence the action of Snf2 family remodelling enzymes by different mechanisms. J Mol Biol. 2007;374(3):563–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford J, et al. A SWI/SNF- and INO80-dependent nucleosome movement at the INO1 promoter. Biochem Biophys Res Commun. 2007;361(4):974–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis NJ, Kingston RE, Woodcock CL. Chromatin compaction by a polycomb group protein complex. Science. 2004;306(5701):1574–7.

    Article  PubMed  CAS  Google Scholar 

  • Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25(38):5220–7.

    Article  PubMed  CAS  Google Scholar 

  • Gunawardena RW, et al. SWI/SNF activity is required for the repression of deoxyribonucleotide triphosphate metabolic enzymes via the recruitment of mSin3B. J Biol Chem. 2007;282(28):20116–23.

    Article  PubMed  CAS  Google Scholar 

  • Hartwell LH, et al. Genetic control of the cell division cycle in yeast. Science. 1974;183(120):46–51.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Neely KE, Workman JL. Histone acetyltransferase complexes stabilize swi/snf binding to promoter nucleosomes. Cell. 2001;104(6):817–27.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell. 2002;111(3):369–79.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Awad S, Prochasson P. The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. J Biol Chem. 2006;281(26):18126–34.

    Article  PubMed  CAS  Google Scholar 

  • Ho L, et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A. 2009;106(13):5181–6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsiao PW, et al. BAF60a mediates critical interactions between nuclear receptors and the BRG1 chromatin-remodeling complex for transactivation. Mol Cell Biol. 2003;23(17):6210–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang J, Laurent BC. A Role for the RSC chromatin remodeler in regulating cohesion of sister chromatid arms. Cell Cycle. 2004;3(8):973–5.

    PubMed  CAS  Google Scholar 

  • Huang J, Hsu JM, Laurent BC. The RSC nucleosome-remodeling complex is required for Cohesin’s association with chromosome arms. Mol Cell. 2004;13(5):739–50.

    Article  PubMed  CAS  Google Scholar 

  • Huang X, et al. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319(2):258–66.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson RH, et al. Structure and function of a human TAFII250 double bromodomain module. Science. 2000;288(5470):1422–5.

    Article  PubMed  CAS  Google Scholar 

  • Kasten M, et al. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. EMBO J. 2004;23(6):1348–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim SJ, et al. Activator Gcn4p and Cyc8p/Tup1p are interdependent for promoter occupancy at ARG1 in vivo. Mol Cell Biol. 2005;25(24):11171–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koyama H, et al. Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae. FEBS Lett. 2002;531(2):215–21.

    Article  PubMed  CAS  Google Scholar 

  • Krebs JE, et al. Global role for chromatin remodeling enzymes in mitotic gene expression. Cell. 2000;102(5):587–98.

    Article  PubMed  CAS  Google Scholar 

  • Kundu S, Horn PJ, Peterson CL. SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev. 2007;21(8):997–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lavigne M, et al. Interaction of HP1 and Brg1/Brm with the globular domain of histone H3 is required for HP1-mediated repression. PLoS Genet. 2009;5(12):e1000769.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lessard J, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55(2):201–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lickert H, et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature. 2004;432(7013):107–12.

    Article  PubMed  CAS  Google Scholar 

  • Lorch Y, Zhang M, Kornberg RD. RSC unravels the nucleosome. Mol Cell. 2001;7(1):89–95.

    Article  PubMed  CAS  Google Scholar 

  • Malone EA, et al. Mutations in SPT16/CDC68 suppress cis- and trans-acting mutations that affect promoter function in Saccharomyces cerevisiae. Mol Cell Biol. 1991;11(11):5710–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martens JA, Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev. 2003;13(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  • Medina PP, Sanchez-Cespedes M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics. 2008;3(2):64–8.

    Article  PubMed  Google Scholar 

  • Monahan BJ, et al. Fission yeast SWI/SNF and RSC complexes show compositional and functional differences from budding yeast. Nat Struct Mol Biol. 2008;15(8):873–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moreira JM, Holmberg S. Transcriptional repression of the yeast CHA1 gene requires the chromatin-remodeling complex RSC. EMBO J. 1999;18(10):2836–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moshkin YM, et al. Histone chaperone ASF1 cooperates with the Brahma chromatin-remodelling machinery. Genes Dev. 2002;16(20):2621–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moshkin YM, et al. Functional differentiation of SWI/SNF remodelers in transcription and cell cycle control. Mol Cell Biol. 2007;27(2):651–61.

    Article  PubMed  CAS  Google Scholar 

  • Neely KE, et al. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol. 2002;22(6):1615–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ng HH, et al. Genome-wide location and regulated recruitment of the RSC nucleosome-remodeling complex. Genes Dev. 2002;16(7):806–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nielsen AL, et al. Selective interaction between the chromatin-remodeling factor BRG1 and the heterochromatin-associated protein HP1alpha. EMBO J. 2002;21(21):5797–806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1999;63(2):349–404.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Park YJ, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol. 2008;18(3):282–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parnell TJ, Huff JT, Cairns BR. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008;27(1):100–10.

    Article  PubMed  CAS  Google Scholar 

  • Peterson CL, Cote J. Cellular machineries for chromosomal DNA repair. Genes Dev. 2004;18(6):602–16.

    Article  PubMed  CAS  Google Scholar 

  • Peterson S, et al. NAP1 catalyzes the formation of either positive or negative supercoils on DNA on basis of the dimer-tetramer equilibrium of histones H3/H4. Biochemistry. 2007;46(29):8634–46.

    Article  PubMed  CAS  Google Scholar 

  • Prochasson P, et al. The HIR corepressor complex binds to nucleosomes generating a distinct protein/DNA complex resistant to remodeling by SWI/SNF. Genes Dev. 2005;19(21):2534–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ransom M, et al. FACT and the proteasome promote promoter chromatin disassembly and transcriptional initiation. J Biol Chem. 2009;284(35):23461–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reinke H, Horz W. Histones are first hyperacetylated and then lose contact with the activated PHO5 promoter. Mol Cell. 2003;11(6):1599–607.

    Article  PubMed  CAS  Google Scholar 

  • Reinke H, Gregory PD, Horz W. A transient histone hyperacetylation signal marks nucleosomes for remodeling at the PHO8 promoter in vivo. Mol Cell. 2001;7(3):529–38.

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, et al. A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell. 1994;77(6):917–29.

    Article  PubMed  CAS  Google Scholar 

  • Schwabish MA, Struhl K. The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol. 2007;27(20):6987–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim EY, et al. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol. 2005;25(10):3934–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28(7):2221–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shogren-Knaak M, et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science. 2006;311(5762):844–7.

    Article  PubMed  CAS  Google Scholar 

  • Simpson RT, et al. Nucleosome positioning and transcription. Cold Spring Harb Symp Quant Biol. 1993;58:237–45.

    Article  PubMed  CAS  Google Scholar 

  • Soutoglou E, Talianidis I. Coordination of PIC assembly and chromatin remodeling during differentiation-induced gene activation. Science. 2002;295(5561):1901–4.

    Article  PubMed  CAS  Google Scholar 

  • Soutourina J, et al. Rsc4 connects the chromatin remodeler RSC to RNA polymerases. Mol Cell Biol. 2006;26(13):4920–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam P, et al. Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2000;97(7):3364–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Syntichaki P, Topalidou I, Thireos G. The Gcn5 bromodomain co-ordinates nucleosome remodelling. Nature. 2000;404(6776):414–7.

    Article  PubMed  CAS  Google Scholar 

  • Tomar RS, et al. A novel mechanism of antagonism between ATP-dependent chromatin remodeling complexes regulates RNR3 expression. Mol Cell Biol. 2009;29(12):3255–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya E, et al. The Saccharomyces cerevisiae NPS1 gene, a novel CDC gene which encodes a 160 kDa nuclear protein involved in G2 phase control. EMBO J. 1992;11(11):4017–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsuchiya E, Hosotani T, Miyakawa T. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of saccharomyces cerevisiae centromeres. Nucleic Acids Res. 1998;26(13):3286–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Underhill C, et al. A novel nuclear receptor corepressor complex, N-CoR, contains components of the mammalian SWI/SNF complex and the corepressor KAP-1. J Biol Chem. 2000;275(51):40463–70.

    Article  PubMed  CAS  Google Scholar 

  • van Attikum H, Fritsch O, Gasser SM. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 2007;26(18):4113–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • VanDemark AP, et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell. 2007;27(5):817–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan M, et al. Molecular basis of CD4 repression by the Swi/Snf-like BAF chromatin remodeling complex. Eur J Immunol. 2009;39(2):580–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, et al. Beyond the double helix: writing and reading the histone code. Novartis Found Symp. 2004;259:3–17. discussion 17–21, 163–9.

    PubMed  CAS  Google Scholar 

  • Xu F, Zhang K, Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell. 2005;121(3):375–85.

    Article  PubMed  CAS  Google Scholar 

  • Yoo AS, et al. MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature. 2009;460(7255):642–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yukawa M, et al. Nps1/Sth1p, a component of an essential chromatin-remodeling complex of Saccharomyces cerevisiae, is required for the maximal expression of early meiotic genes. Genes Cells. 1999;4(2):99–110.

    Article  PubMed  CAS  Google Scholar 

  • Zhang HS, et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell. 2000;101(1):79–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payel Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sen, P., Chatterjee, N., Bartholomew, B. (2018). SWI/SNF Chromatin Remodeling Complex. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_46

Download citation

Publish with us

Policies and ethics