Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RSK (p90 Ribosomal S6 Kinase)

  • Philippe P. RouxEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_382


Historical Background

The p90 ribosomal S6 kinase (RSK) family comprises four mammalian Ser/Thr kinases (RSK1-4) (Romeo et al. 2012). The first RSK family member was identified as a kinase activity in maturating Xenopus laevis oocytes that phosphorylated the 40S ribosomal subunit protein S6 (rpS6) (Erikson and Maller 1985, 1986). Although the p70 ribosomal S6 kinases 1 and 2 (S6K1 and S6K2) were later shown to be the predominant S6 kinases operating in somatic cells (Blenis et al. 1991; Chung et al. 1992), RSK1 and RSK2 were found to phosphorylate rpS6 in response to ERK1/ERK2 pathway activation (Cohen et al. 2005; Roux et al. 2007). Interestingly, whereas S6K1/S6K2 phosphorylate all sites on rpS6 (Ser235, Ser236, Ser240, and Ser244), RSK1 and RSK2 were shown to specifically phosphorylate Ser235 and Ser236 (Roux et al. 2007). It should be noted, however, that the molecular mechanism(s) underlying the diverse effects of rpS6 phosphorylation...

This is a preview of subscription content, log in to check access.


  1. Anjum R, Roux PP, Ballif BA, Gygi SP, Blenis J. The tumor suppressor DAP kinase is a target of RSK-mediated survival signaling. Curr Biol. 2005;15:1762–7.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arechavaleta-Velasco F, Zeferino-Toquero M, Estrada-Moscoso I, Imani-Razavi FS, Olivares A, Perez-Juarez CE, Diaz-Cueto L. Ribosomal S6 kinase 4 (RSK4) expression in ovarian tumors and its regulation by antineoplastic drugs in ovarian cancer cell lines. Med Oncol. 2016;33:11.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aronchik I, Appleton BA, Basham SE, Crawford K, Del Rosario M, Doyle LV, Estacio WF, Lan J, Lindvall MK, Luu CA, et al. Novel potent and selective inhibitors of p90 ribosomal S6 kinase reveal the heterogeneity of RSK function in MAPK-driven cancers. Mol Cancer Res. 2014;12:803–12.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408:297–315.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Beck K, Ehmann N, Andlauer TF, Ljaschenko D, Strecker K, Fischer M, Kittel RJ, Raabe T. Loss of the Coffin-Lowry syndrome-associated gene RSK2 alters ERK activity, synaptic function and axonal transport in Drosophila motoneurons. Dis Model Mech. 2015;8:1389–400.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bjorbaek C, Zhao Y, Moller DE. Divergent functional roles for p90rsk kinase domains. J Biol Chem. 1995;270:18848–52.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blenis J, Chung J, Erikson E, Alcorta DA, Erikson RL. Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp70-S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ. 1991;2:279–85.PubMedPubMedCentralGoogle Scholar
  8. Cai J, Ma H, Huang F, Zhu D, Zhao L, Yang Y, Bi J, Zhang T. Low expression of RSK4 predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 2014;7:4959–70.PubMedPubMedCentralGoogle Scholar
  9. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Carriere A, Cargnello M, Julien LA, Gao H, Bonneil E, Thibault P, Roux PP. Oncogenic MAPK signaling stimulates mTORC1 activity by promoting RSK-mediated raptor phosphorylation. Curr Biol. 2008;18:1269–77.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69:1227–36.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cohen MS, Zhang C, Shokat KM, Taunton J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science. 2005;308:1318–21.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Dalby KN, Morrice N, Caudwell FB, Avruch J, Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J Biol Chem. 1998;273:1496–505.PubMedPubMedCentralCrossRefGoogle Scholar
  14. David JP, Mehic D, Bakiri L, Schilling AF, Mandic V, Priemel M, Idarraga MH, Reschke MO, Hoffmann O, Amling M, et al. Essential role of RSK2 in c-Fos-dependent osteosarcoma development. J Clin Invest. 2005;115:664–72.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Dufresne SD, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach WG, Moller DE, Goodyear LJ. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol Cell Biol. 2001;21:81–7.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Erikson E, Maller JL. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc Natl Acad Sci U S A. 1985;82:742–6.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Erikson E, Maller JL. Purification and characterization of a protein kinase from Xenopus eggs highly specific for ribosomal protein S6. J Biol Chem. 1986;261:350–5.PubMedPubMedCentralGoogle Scholar
  18. Frodin M, Jensen CJ, Merienne K, Gammeltoft S. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J. 2000;19:2924–34.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM. A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J. 2002;21:5396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Galan JA, Geraghty KM, Lavoie G, Kanshin E, Tcherkezian J, Calabrese V, Jeschke GR, Turk BE, Ballif BA, Blenis J, et al. Phosphoproteomic analysis identifies the tumor suppressor PDCD4 as a RSK substrate negatively regulated by 14-3-3. Proc Natl Acad Sci U S A. 2014;111:E2918–27.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hsiao K-M, Chou S-Y, Shih S-J, Ferrell Jr JE. Evidence that inactive p42 mitogen-activated protein kinase and inactive Rsk exist as a heterodimer in vivo. Proc Natl Acad Sci U S A. 1994;91:5480–4.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M. 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem. 1999;274:27168–76.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kang S, Dong S, Guo A, Ruan H, Lonial S, Khoury HJ, Gu TL, Chen J. Epidermal growth factor stimulates RSK2 activation through activation of the MEK/ERK pathway and src-dependent tyrosine phosphorylation of RSK2 at Tyr-529. J Biol Chem. 2008;283:4652–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Li Q, Jiang Y, Wei W, Ji Y, Gao H, Liu J. Frequent epigenetic inactivation of RSK4 by promoter methylation in cancerous and non-cancerous tissues of breast cancer. Med Oncol. 2014;31:793.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lopez-Vicente L, Pons B, Coch L, Teixido C, Hernandez-Losa J, Armengol G, Ramon YCS. RSK4 inhibition results in bypass of stress-induced and oncogene-induced senescence. Carcinogenesis. 2011;32:470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Martinez EC, Passariello CL, Li J, Matheson CJ, Dodge-Kafka K, Reigan P, Kapiloff MS. RSK3: a regulator of pathological cardiac remodeling. IUBMB Life. 2015;67:331–7.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Meyuhas O. Ribosomal protein S6 phosphorylation: four decades of research. Int Rev Cell Mol Biol. 2015;320:41–73.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J. 2003;370:361–71.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Pereira PM, Schneider A, Pannetier S, Heron D, Hanauer A. Coffin-Lowry syndrome. Eur J Hum Genet. 2010;18:627–33.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Poirier R, Jacquot S, Vaillend C, Soutthiphong AA, Libbey M, Davis S, Laroche S, Hanauer A, Welzl H, Lipp HP, et al. Deletion of the Coffin-Lowry syndrome gene Rsk2 in mice is associated with impaired spatial learning and reduced control of exploratory behavior. Behav Genet. 2007;37:31–50.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Putz G, Bertolucci F, Raabe T, Zars T, Heisenberg M. The S6KII (rsk) gene of Drosophila melanogaster differentially affects an operant and a classical learning task. J Neurosci. 2004;24:9745–51.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Rafiee M, Keramati MR, Ayatollahi H, Sadeghian MH, Barzegar M, Asgharzadeh A, Alinejad M. Down-regulation of ribosomal S6 kinase RPS6KA6 in acute myeloid leukemia patients. Cell J. 2016;18:159–64.PubMedPubMedCentralGoogle Scholar
  33. Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J. Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol. 1999;9:810–20.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Romeo Y, Roux PP. Paving the way for targeting RSK in cancer. Expert Opin Ther Targets. 2011;15:5–9.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Romeo Y, Zhang X, Roux PP. Regulation and function of the RSK family of protein kinases. Biochem J. 2012;441:553–69.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Romeo Y, Moreau J, Zindy P-J, Saba-El-Leil M, Lavoie G, Dandachi F, Baptissart M, Borden KLB, Meloche S, Roux PP. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene. 2013;32:2917–26.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Roux PP, Richards SA, Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol. 2003;23:4796–804.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Roux PP, Ballif BA, Anjum R, Gygi SP, Blenis J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A. 2004;101:13489–94.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N, Blenis J. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282:14056–64.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Sapkota GP, Cummings L, Newell FS, Armstrong C, Bain J, Frodin M, Grauert M, Hoffmann M, Schnapp G, Steegmaier M, et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J. 2007;401:29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Shimamura A, Ballif BA, Richards SA, Blenis J. Rsk1 mediates a MEK-MAP kinase cell survival signal. Curr Biol. 2000;10:127–35.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Smith JA, Poteet-Smith CE, Malarkey K, Sturgill TW. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J Biol Chem. 1999;274:2893–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Smith JA, Poteet-Smith CE, Xu Y, Errington TM, Hecht SM, Lannigan DA. Identification of the first specific inhibitor of p90 ribosomal S6 kinase (RSK) reveals an unexpected role for RSK in cancer cell proliferation. Cancer Res. 2005;65:1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Sulzmaier FJ, Ramos JW. RSK isoforms in cancer cell invasion and metastasis. Cancer Res. 2013;73:6099–105.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Sutherland C, Campbell DG, Cohen P. Identification of insulin-stimulated protein kinase-1 as the rabbit equivalent of rskmo-2: identification of two threonines phosphorylated during activation by mitogen-activated protein kinase. Eur J Biochem. 1993;212:581–8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Thomas GM, Rumbaugh GR, Harrar DB, Huganir RL. Ribosomal S6 kinase 2 interacts with and phosphorylates PDZ domain-containing proteins and regulates AMPA receptor transmission. Proc Natl Acad Sci U S A. 2005;102(42):15006–11.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel JL, Sassone-Corsi P, Hanauer A. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature. 1996;384:567–70.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Vik TA, Ryder JW. Identification of serine 380 as the major site of autophosphorylation of Xenopus pp90rsk. Biochem Biophys Res Commun. 1997;235:398–402.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zaru R, Ronkina N, Gaestel M, Arthur JS, Watts C. The MAPK-activated kinase Rsk controls an acute Toll-like receptor signaling response in dendritic cells and is activated through two distinct pathways. Nat Immunol. 2007;8:1227–35.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zhao Y, Bjorbaek C, Moller DE. Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J Biol Chem. 1996;271:29773–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Faculty of MedicineUniversité de MontréalMontrealCanada