Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • Michael S. Samuel
  • Michael F. OlsonEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_328


Historical Background

The Rho family of small molecular weight GTP-binding proteins, which comprises 22 proteins including RhoA, Rac1, and Cdc42, was originally isolated based on their high degree of homology with the Ras proto-oncogenes (Rho = Ras homologue). Following their identification, a variety of approaches were used to isolate interacting proteins that might convey signals downstream to regulate numerous biological processes. One approach was to use GTP-loaded RhoA as a high-affinity reagent to fish for interacting proteins, and the ROCK kinases were identified in this way (Leung et al. 1995; Ishizaki et al. 1996; Matsui et al. 1996). A number of different names have been used to describe the two kinases, and early reports were sometimes not careful to accurately specify which isoforms...
This is a preview of subscription content, log in to check access.


  1. Coleman ML, Sahai EA, Yeo M, Bosch M, Dewar A, Olson MF. Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. Nat Cell Biol. 2001;3:339–45.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, et al. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK). Small GTPases. 2014;5:e29846.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Kamai T, Arai K, Sumi S, Tsujii T, Honda M, Yamanishi T, et al. The rho/rho-kinase pathway is involved in the progression of testicular germ cell tumour. BJU Int. 2002;89:449–53.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res. 2003;9:2632–41.PubMedPubMedCentralGoogle Scholar
  6. Kümper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, et al. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife. 2016;5:e12203.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995;270:29051–4.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Lochhead PA, Wickman G, Mezna M, Olson MF. Activating ROCK1 somatic mutations in human cancer. Oncogene. 2010;29:2591–8.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, et al. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15:2208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Olson MF. Applications for ROCK kinase inhibition. Curr Opin Cell Biol. 2008;20:242–8.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Pinner S, Sahai E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol. 2008;10:127–37.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Riento K, Guasch RM, Garg R, Jin B, Ridley AJ. RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol. 2003;23:4219–29.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Samuel MS, Olson MF. Dying alone: a tale of rho. Cell Stem Cell. 2010;7:135–6.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Samuel MS, Munro J, Bryson S, Forrow S, Stevenson D, Olson MF. Tissue selective expression of conditionally-regulated ROCK by gene targeting to a defined locus. Genesis. 2009;47:440–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P, et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell. 2011;19:776–91.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Samuel MS, Rath N, Masre SF, Boyle ST, Greenhalgh DA, Kochetkova M, et al. Tissue-selective expression of a conditionally-active ROCK2-estrogen receptor fusion protein. Genesis. 2016. doi:10.1002/dvg.22988.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J. Direct cleavage of ROCK II by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J Exp Med. 2005;201:465–71.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005;168:941–53.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol. 2003;23:5043–55.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Thumkeo D, Shimizu Y, Sakamoto S, Yamada S, Narumiya S. ROCK-I and ROCK-II cooperatively regulate closure of eyelid and ventral body wall in mouse embryo. Genes Cells. 2005;10:825–34.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Truebestein L, Elsner DJ, Fuchs E, Leonard TA. A molecular ruler regulates cytoskeletal remodelling by the Rho kinases. Nat Commun. 2015;6:10029.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Truebestein L, Elsner DJ, Leonard TA. Made to measure - keeping Rho kinase at a distance. Small GTPases. 2016;7:82–92.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997;389:990–4.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Unbekandt M, Olson MF. The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer. J Mol Med. 2014;92:217–25.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Wen W, Liu W, Yan J, Zhang M. Structure basis and unconventional lipid membrane binding properties of the PH-C1 tandem of rho kinases. J Biol Chem. 2008;283:26263–73.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Wickman GR, Samuel MS, Lochhead PA, Olson MF. The rho-regulated ROCK kinases in cancer. In: van Golen K, editor. The Rho GTPases in Cancer, Vol. 3. New York: Springer; 2010. p. 163–92.CrossRefGoogle Scholar
  27. Yap TA, Walton MI, Grimshaw KM, te Poele RH, Eve PD, Valenti MR, et al. AT13148 is a novel, oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity. Clin Cancer Res. 2012;18:3912–23.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Zanin-Zhorov A, Flynn R, Waksal SD, Blazar BR. Isoform-specific targeting of ROCK proteins in immune cells. Small GTPases. 2016;7:173–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Zhang YM, Bo J, Taffet GE, Chang J, Shi J, Reddy AK, et al. Targeted deletion of ROCK1 protects the heart against pressure overload by inhibiting reactive fibrosis. FASEB J. 2006;20:916–25.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centre for Cancer Biology, SA Pathology and University of South AustraliaAdelaideAustralia