Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

PTEN-Induced Kinase 1 (PINK1)

  • Laura M. WestrateEmail author
  • Jeffrey P. MacKeigan
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_206



Historical Background

The discovery of PTEN-induced kinase 1 (PINK1) was first described in 2001 by Valente et al. as a novel locus for autosomal recessive Parkinson’s Disease (PD). Termed PARK6, the new locus was identified in a genome-wide homozygosity screen performed in a Sicilian family with multiple PD-affected members (Valente et al. 2001, 2004). Localized to the mitochondria, PINK1 was the first nuclear-encoded mitochondrial protein to be implicated in PD pathogenesis and strongly suggests the role of mitochondrial pathomechanisms in PD (Valente et al. 2004). The precise mechanism by which PINK1 contributes to mitochondrial dysfunction, however, remains unclear as there remains a significant gap in knowledge in our understanding of the role of PINK1 in human disease.

First identified as a serine/threonine kinase with reported homology to the Ca2+/calmodulin family, PINK1 does not fall within any of the previously identified kinase families as...

This is a preview of subscription content, log in to check access.


  1. Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.CrossRefPubMedGoogle Scholar
  2. Chu CT. A pivotal role for PINK1 and autophagy in mitochondrial quality control: implications for Parkinson disease. Hum Mol Genet. 2010;19(R1):R28–37.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Deas E, Plun-Favreau H, Wood NW. PINK1 function in health and disease. EMBO Mol Med. 2009;1(3):152–65.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A. 2008;105(32):11364–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31.PubMedCrossRefGoogle Scholar
  6. Jendrach M, Gispert S, Ricciardi F, Klinkenberg M, Schemm R, Auburger G. The mitochondrial kinase PINK1, stress response and Parkinson’s disease. J Bioenerg Biomembr. 2009;41(6):481–6.CrossRefPubMedGoogle Scholar
  7. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 2008;377(3):975–80.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A. 2007;104(27):11441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–34. New York, NY.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36.CrossRefPubMedGoogle Scholar
  11. Park J, Kim Y, Chung J. Mitochondrial dysfunction and Parkinson’s disease genes: insights from Drosophila. Dis Model Mech. 2009;2(7–8):336–40.CrossRefPubMedGoogle Scholar
  12. Plun-Favreau H, Klupsch K, Moisoi N, Gandhi S, Kjaer S, Frith D, et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK1. Nat Cell Biol. 2007;9(11):1243–52.CrossRefPubMedGoogle Scholar
  13. Pridgeon JW, Olzmann JA, Chin LS, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007;5(7):e172.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Samann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E. Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem. 2009;284(24):16482–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Silvestri L, Caputo V, Bellacchio E, Atorino L, Dallapiccola B, Valente EM, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. 2005;14(22):3477–92.CrossRefPubMedGoogle Scholar
  16. Thomas KJ, Cookson MR. The role of PTEN-induced kinase 1 in mitochondrial dysfunction and dynamics. Int J Biochem Cell Biol. 2009;41(10):2025–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, et al. Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet. 2001;68(4):895–900.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60. (New York, NY).CrossRefPubMedGoogle Scholar
  19. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry. 2009;48(9):2045–52.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008;105(33):12022–7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Van Andel Graduate SchoolGrand RapidsUSA
  2. 2.Van Andel Research InstituteGrand RapidsUSA
  3. 3.Center for Cancer Genomics and Quantitative BiologyVan Andel Research InstituteGrand RapidsUSA