Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Nucleotide Receptor P2Y

  • Didier CommuniEmail author
  • Bernard Robaye
  • Jean-Marie Boeynaems
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_198


Historical Background

Signaling by extracellular ATP was first reported in 1929 (Drury and Szent-Györgyi 1929). Subdivision of purinergic receptors between P1 (adenosine) and P2 (ATP, ADP) was proposed in 1978 (Burnstock 1978), and further subdivision of P2 receptors between P2Y and P2X was made in 1985 (Burnstock and Kennedy 1985). The P2Y1 and P2Y2 receptors were the first P2Y receptors to be cloned in 1993 (Webb et al. 1993; Lustig et al. 1993).

Release of Nucleotides in the Extracellular Fluids

Although nucleotides, such as ATP and UTP, are mainly intracellular, they are released in the extracellular fluids by various mechanisms. One of them is cell damage: both necrotic and apoptotic cells release ATP and other nucleotides that thus constitute “danger signals” or DAMP (damage-associated molecular pattern) (Elliott et al. 2009). But they can also be released without cell lysis by specific mechanisms: exocytosis of secretory...

This is a preview of subscription content, log in to check access.


  1. Abbracchio MP, Burnstock G, Boeynaems J-M, Barnard EA, Boyer JL, Kennedy C, et al. International Union of Pharmacology. Update and subclassification of the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58:281–341.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andre P, Delaney SM, LaRocca T, Vincent D, DeGuzman F, Jurek M, et al. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest. 2003;112:398–406.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Biver G, Wang N, Gartland A, Orriss I, Arnett TR, Boeynaems JM, Robaye B. Role of the P2Y13 Receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Stem Cells. 2013;31:2747–58.CrossRefPubMedGoogle Scholar
  4. Bles N, Di Pietrantonio L, Boeynaems J-M, Communi D. ATP confers tumorigenic properties to dendritic cells by inducing amphiregulin secretion. Blood. 2010;116(17):3219–26.CrossRefPubMedGoogle Scholar
  5. Burnstock G. A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L, editors. Cell membrane receptors for drugs and hormones: a multidisciplinary approach. New York: Raven Press; 1978. p. 107–18.Google Scholar
  6. Burnstock G, Kennedy C. Is there a basis for distinguishing two types of purinoceptor? Gen Pharmacol. 1985;16:433–40.CrossRefPubMedGoogle Scholar
  7. Chambers JK, Macdonald LE, Sarau HM, Ames RS, Freeman K, Foley JJ, et al. A G protein-coupled receptor for UDP-glucose. J Biol Chem. 2000;275:10767–71.CrossRefPubMedGoogle Scholar
  8. Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkermagel A, et al. ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science. 2006;314:1792–5.CrossRefPubMedGoogle Scholar
  9. Ciciarello M, Zini R, Rossi L, Salvestrini V, Ferrari D, Manfredini R, Lemoli RM. Extracellular purines promote the differentiation of human bone marrow-derived mesenchymal stem cells to the osteogenic and adipogenic lineages. Stem Cells Dev. 2013;22:1097–111.CrossRefPubMedGoogle Scholar
  10. Clouet S, di Pietrantonio L, Daskalopoulos EP, Esfahani H, Horckmans M, Vanorlé M, et al. Loss of mouse P2Y6 nucleotide receptor is associated with physiological macrocardia and amplified pathological cardiac hypertrophy. J Biol Chem. 2016;291(30):15841–52.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar A, Birk E, et al. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol. 2011;82(9):1126–33.CrossRefPubMedGoogle Scholar
  12. Communi D, Pirotton S, Parmentier M, Boeynaems JM. Cloning and functional expression of a human uridine nucleotide receptor. J Biol Chem. 1995;270:30849–52.CrossRefPubMedGoogle Scholar
  13. Communi D, Parmentier M, Boeynaems JM. Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun. 1996;222:303–8.CrossRefPubMedGoogle Scholar
  14. Communi D, Govaerts C, Parmentier M, Boeynaems JM. Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem. 1997;272:31969–73.CrossRefPubMedGoogle Scholar
  15. Communi D, Suarez-Huerta N, Dussossoy D, Savi P, Boeynaems JM. Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem. 2001a;276:16561–6.CrossRefPubMedGoogle Scholar
  16. Communi D, Gonzalez NS, Detheux M, Brezillon S, Lannoy V, Parmentier M, Boeynaems JM. Identification of a novel human ADP receptor coupled to Gi. J Biol Chem. 2001b;276:41479–85.CrossRefPubMedGoogle Scholar
  17. Cressman VL, Lazarowski E, Homolya L, Boucher RC, Koller BH, Grubb BR. Effect of loss of P2Y2 receptor gene expression on nucleotide regulation of murine epithelial Cl transport. J Biol Chem. 1999;274:26461–8.CrossRefPubMedGoogle Scholar
  18. Drury AN, Szent-Györgyi A. The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol. 1929;68:213–37.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Fabre AC, Malaval C, Ben Addi A, Verdier C, Pons V, Serhan N, et al. P2Y13 receptor is critical for reverse cholesterol transport. Hepatology. 2010;52:1477–83.CrossRefPubMedGoogle Scholar
  21. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9:1512–9.PubMedCrossRefGoogle Scholar
  22. Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C. Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation. 2008;118:754–63.CrossRefPubMedGoogle Scholar
  23. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 2001;409:202–7.CrossRefPubMedGoogle Scholar
  24. Horckmans M, Robaye B, Léon-Gόmez E, Lantz N, Unger P, Dol-Gleizes F, et al. P2Y4 nucleotide receptor: a novel actor in post-natal cardiac development and function. Angiogenesis. 2012a;15:349–60.CrossRefPubMedGoogle Scholar
  25. Horckmans M, Léon-Gomez E, Robaye B, Balligand JL, Boeynaems JM, Dessy C, Communi D. Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise. Am J Physiol Heart Circ Physiol. 2012b;303:835–43.CrossRefGoogle Scholar
  26. Horckmans M, Esfahani H, Beauloye C, Clouet S, di Pietrantonio L, Robaye R, et al. Loss of P2Y4 nucleotide receptor protect against myocardial infarction through endothelin-1 downregulation. J Immunol. 2015;194:1874–81.CrossRefPubMedGoogle Scholar
  27. Jacquet S, Malaval C, Martinez LO, Sak K, Rolland C, Perez C, et al. The nucleotide receptor P2Y13 is a key regulator of hepatic high-density lipoprotein (HDL) endocytosis. Cell Mol Life Sci. 2005;62:2508–15.CrossRefPubMedGoogle Scholar
  28. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, et al. UDP acting at P2Y6 receptors is a novel mediator of microglial phagocytosis. Nature. 2007;446:1091–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, et al. Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest. 1999;104:1731–7.PubMedPubMedCentralCrossRefGoogle Scholar
  30. Lustig KD, Shiau AK, Brake AJ, Julius D. Expression cloning of an ATP receptor from mouse neuroblasoma cells. Proc Natl Acad Sci. 1993;90:5113–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Marteau F, Gonzalez NS, Communi D, Goldman M, Boeynaems J-M, Communi D. Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood. 2005;106:3860–6.CrossRefPubMedGoogle Scholar
  32. Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H. P2Y6 receptor-Galpha12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J. 2008;27:3104–15.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Ratjen F, Durham T, Navratil T, Schaberg A, Accurso FJ, Wainwright C, et al. Long term effects of denufosol terasodium in patients with cystic fibrosis. J Cyst Fibros. 2012;11:539–49.CrossRefPubMedGoogle Scholar
  34. Riegel AK, Faigle M, Zug S, Rosenberger P, Robaye B, Boeynaems J-M, et al. Selective induction of endothelial P2Y6 nucleotide recptor promotes vascular inflammation. Blood. 2011;117:2548–55.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Robaye B, Ghanem E, Wilkin F, Fokan D, Van Driessche W, Schurmans S, et al. Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol. 2003;63:777–83.CrossRefPubMedGoogle Scholar
  36. Seye CI, Yu N, Gonzalez FA, Erb L, Weisman GA. The P2Y2 nucleotide receptor mediates vascular cell adhesion molecule-1 expression through interaction with VEGF receptor-2 (KDR/Flk-1). J Biol Chem. 2004;279:35679–86.CrossRefPubMedGoogle Scholar
  37. Vanderstocken G, Bondue B, Horckmans M, Di Pietrantonio L, Robaye B, Boeynaems J-M, Communi D. P2Y2 receptor regulates VCAM-1membrane and soluble forms and eosinophil accumulation during lung inflammation. J Immunol. 2010;185(6):3702–7.CrossRefPubMedGoogle Scholar
  38. Waldo GL, Harden TK. Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol. 2004;65:426–36.CrossRefPubMedGoogle Scholar
  39. Wang N, Robaye B, Agrawal A, Skerry TM, Boeynaems J-M, Gartland A. Reduced bone turnover in mice lacking the P2Y13 receptor of ADP. Mol Endocrinol. 2012;26:142–52.CrossRefPubMedGoogle Scholar
  40. Webb TE, Simon J, Krishek BJ, Bateson AN, Smart TG, King BF, et al. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 1993;324:219–25.CrossRefPubMedGoogle Scholar
  41. Wilkin F, Duhant X, Bruyns C, Suarez-Huerta N, Boeynaems JM, Robaye B. The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol. 2001;166:7172–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Didier Communi
    • 1
    Email author
  • Bernard Robaye
    • 2
  • Jean-Marie Boeynaems
    • 3
  1. 1.Institute of Interdisciplinary Research, School of MedicineUniversité Libre de BruxellesBrusselsBelgium
  2. 2.Institute of Interdisciplinary Research, School of MedicineUniversité Libre de BruxellesGosselies, BruxellesBelgium
  3. 3.Department of Laboratory Medicine, Erasme Academic HospitalUniversité Libre de BruxellesBrusselsBelgium