Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RPN8

  • James P. Brody
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_192

Synonyms

 PSMD7;  S12

Background

The gene PSMD7 encodes the protein RPN8, also known as S12. RPN8, the human homologue of Mov-34, is a non-ATPase component of the 19S regulatory complex (Dubiel et al. 1995). Two 19S regulatory complexes bind to each end of the 20S proteasome to form the 26S proteasome.

The Proteasome

The proteasome plays an important role in the cell, but its mechanism of action is not well understood. Although the proteasome was first isolated in 1979 (DeMartino and Goldberg 1979), the essential role the proteasome plays within a cell was not realized until 1990 (Fujiwara et al. 1990). The proteasome is the main component in the intracellular protein degradation pathway. This pathway was once thought to be a relatively unimportant part of the cell, but is now recognized to play an important role in regulating the lifetime of cellular proteins (Spataro et al. 1998).

Degradation is an important process within the cell (Glickman and Ciechanover 2002). The ultimate state...

This is a preview of subscription content, log in to check access.

References

  1. Akopian TN, Kisselev AF, Goldberg AL. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilium. J Biol Chem. 1997;272(3):1791–8.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R. The proteasome. Annu Rev Biophys Biomol Struct. 1999;28:295–317.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M. The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol. 1999;1(4):221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron. 2003;40(2):427–46.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.PubMedPubMedCentralCrossRefGoogle Scholar
  6. DeMartino GN, Goldberg AL. Identification and partial purification of an ATP-stimulated alkaline protease in rat liver. J Biol Chem. 1979;254(10):3712–5.PubMedPubMedCentralGoogle Scholar
  7. Dubiel W, Ferrell K, Dumdey R, Standera S, Prehn S, Rechsteiner M. Molecular cloning and expression of subunit 12: a non-MCP and non-ATPase subunit of the 26 S protease. FEBS Lett. 1995;363(1–2):97–100.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD. Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 2001;20(24):7096–107.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Fujiwara T, Tanaka K, Orino E, Yoshimura T, Kumatori A, Tamura T, Chung CH, Nakai T, Yamaguchi K, Shin S. Proteasomes are essential for yeast proliferation. cDNA cloning and gene disruption of two major subunits. J Biol Chem. 1990;265(27):16604–13.PubMedPubMedCentralGoogle Scholar
  10. Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y. Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 2010;396(4):1048–53.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82(2):373–428.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Hochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995;7:215–23.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Isono E, Saeki Y, Yokosawa H, Toh-e A. Rpn7 is required for the structural integrity of the 26 s proteasome of Saccharomyces cerevisiae. J Biol Chem. 2004;279(26):27168–76.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Kisselev AF, Akopian TN, Goldberg AL. Range of sizes of peptide products generated during degradation of different proteins by archaeal proteasomes. J Biol Chem. 1998;273(4):1982–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Mason GG, Murray RZ, Pappin D, Rivett AJ. Phosphorylation of ATPase subunits of the 26S proteasome. FEBS Lett. 1998;430(3):269–74.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Nussbaum AK, Dick TP, Keilholz W, Schirle M, Stevanovic S, Dietz K, Heinemeyer W, Groll M, Wolf DH, Huber R, Rammensee H-G, Schild H. Cleavage motifs of the yeast 20s proteasome β subunits deduced from digests of enolase 1. Proc Natl Acad Sci U S A. 1998;95:12504–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Orlowski M, Wilk S. Catlaytic activities of the 20 s proteasome, a multicatalytic proteinase complex. Arch Biochem Biophys. 2000;383(1):1–16.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Peters B, Janek K, Kuckelkorn U, Holzhutter H-G. Assessment of proteasomal cleavage probabilities from kinetic analysis of time-dependent product formation. J Mol Biol. 2002;318:847–62.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Realini C, Rogers SW, Rechsteiner M. KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett. 1994;348(2):109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Rubinsztein DC. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006;443(7113):780–6.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ruffner H, Joazeiro CA, Hemmati D, Hunter T, Verma IM. Cancer-predisposing mutations within the RING domain of BRCA1: loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proc Natl Acad Sci U S A. 2001;98(9):5134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Sanches M, Alves BSC, Zanchin NIT, Guimares BG. The crystal structure of the human mov34 mpn domain reveals a metal-free dimer. J Mol Biol. 2007;370(5):846–55.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Seeger M, Kraft R, Ferrell K, Bech-Otschir D, Dumdey R, Schade R, Gordon C, Naumann M, Dubiel WA. novel protein complex involved in signal transduction possessing similarities to 26S proteasome subunits. FASEB J. 1998;12(6):469–78.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Spataro V, Norbury C, Harris AL. The ubiquitin-proteasome pathway in cancer. Br J Cancer. 1998;77(3):448–55.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Stein RL, Melandri F, Dick L. Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry. 1996;35:3899–908.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Tanka K. Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol. 1994;56(5):571–5.CrossRefGoogle Scholar
  27. Thompson HGR, Harris JW, Lin L, Brody JP. Identification of the protein ZIBRA, its genomic organization, regulation and expression in breast cancer cells. Exp Cell Res. 2004;295(2):448–59.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T. The structure of the mammalian 20S proteasome at 2.75Å resolution. Structure. 2002;10:609–18.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Van den Eynde BJ, Morel S. Differential processing of class-i-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol. 2001;13(2):147–53.PubMedPubMedCentralCrossRefGoogle Scholar
  30. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.CrossRefGoogle Scholar
  31. Voorhees PM, Orlowski RZ. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol. 2006;46:189–213.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W. 26s proteasome structure revealed by three dimensional electron microscopy. J Struct Biol. 1998;121:19–29.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol. 2001;2(3):169–78.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ. Dynamic association of proteasomal machinery with the centrosome. J Cell Biol. 1999;145(3):481–90.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of CaliforniaIrvineUSA