Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi


  • John J. PriatelEmail author
  • Kevin Tsai
  • Kenneth W. Harder
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_154


Historical Background

Antigen receptor stimulation of T cells and B cells results in the rapid conversion of the small GTPase Ras from its “inactive” GDP-bound form to its “active” GTP-bound form (Alberola-Ila and Hernández-Hoyos 2003). However, the mechanisms of Ras regulation in lymphocytes, particularly by phorbol esters, had long remained a mystery as known signaling pathways could not account for its activation. The discovery of the Ras guanyl-nucleotide exchange factor RasGRP1, cloned by two groups searching for novel Ras activators in rat brain and murine T cells, was a major advance leading to a better understanding of Ras regulation in lymphocytes (Stone 2011). Ectopic expression of...
This is a preview of subscription content, log in to check access.


  1. Alberola-Ila J, Hernández-Hoyos G. The Ras/MAPK cascade and the control of positive selection. Immunol Rev. 2003;191:79–96.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Coughlin JJ, Stang SL, Dower NA, Stone JC. RasGRP1 and RasGRP3 regulate B cell proliferation by facilitating B cell receptor-Ras signaling. J Immunol. 2005;175:7179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Holländer GA, Gascoigne NRJ, Palmer E. Thymic selection threshold defined by compartmentalization of Ras/MAPK signaling. Nature. 2006;444:724–9.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Diez FR, Garrido AA, Sharma A, Luke CT, Stone JC, Dower NA, Cline JM, Lorenzo PS. RasGRP1 transgenic mice develop cutaneous squamous cell carcinomas in response to skin wounding: potential role of granulocyte colony-stimulating factor. Am J Pathol. 2009;175:392–9.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Gong Q, Cheng AM, Akk AM, Alberola-Ila J, Gong G, Pawson T, Chan AC. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nat Immunol. 2001;2:29–36.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Gorelik G, Fang JY, Wu A, Sawalha AH, Richardson B. Impaired T cell protein kinase C delta activation decreases ERK pathway signaling in idiopathic and hydralazine-induced lupus. J Immunol. 2007;179:5553–63.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Guilbault B, Kay R. RasGRP1 sensitizes an immature B cell line to antigen receptor-induced apoptosis. J Biol Chem. 2004;279:19523–30.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Klinger MB, Guilbault B, Goulding RE, Kay RJ. Deregulated expression of RasGRP1 initiates thymic lymphomagenesis independently of T-cell receptors. Oncogene. 2005;24:2695–704.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Lauchle JO, Kim D, Le DT, Akagi K, Crone M, Krisman K, Warner K, Bonifas JM, Li Q, Coakley KM, et al. Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature. 2009;461:411–4.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Layer K, Lin G, Nencioni A, Hu W, Schmucker A, Antov AN, Li X, Takamatsu S, Chevassut T, Dower NA, et al. Autoimmunity as the consequence of a spontaneous mutation in Rasgrp1. Immunity. 2003;19:243–55.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Lee SH, Yun S, Lee J, Kim MJ, Piao Z-H, Jeong M, Chung JW, Kim T-D, Yoon SR, Greenberg PD, et al. RasGRP1 is required for human NK cell function. J Immunol. 2009;183:7931–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Liu Y, Zhu M, Nishida K, Hirano T, Zhang W. An essential role for RasGRP1 in mast cell function and IgE-mediated allergic response. J Exp Med. 2007;204:93–103.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Mor A, Philips MR. Compartmentalized Ras/MAPK signaling. Annu Rev Immunol. 2006;24:771–800.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Pan W, Zhu S, Yuan M, Cui H, Wang L, Luo X, Li J, Zhou H, Tang Y, Shen N. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J Immunol. 2010;184:6773–81.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Priatel JJ, Teh S-J, Dower NA, Stone JC, Teh H-S. RasGRP1 transduces low-grade TCR signals which are critical for T cell development, homeostasis, and differentiation. Immunity. 2002;17:617–27.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Priatel JJ, Chen X, Zenewicz LA, Shen H, Harder KW, Horwitz MS, Teh H-S. Chronic immunodeficiency in mice lacking RasGRP1 results in CD4 T cell immune activation and exhaustion. J Immunol. 2007;179:2143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Priatel JJ, Chen X, Huang Y-H, Chow MT, Zenewicz LA, Coughlin JJ, Shen H, Stone JC, Tan R, Teh HS. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells. J Immunol. 2010;184:666–76.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Roose JP, Mollenauer M, Gupta V, Stone J, Weiss A. A diacylglycerol-protein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells. Mol Cell Biol. 2005;25(11):4426–41.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Rubio I, Grund S, Song S-P, Biskup C, Bandemer S, Fricke M, Förster M, Graziani A, Wittig U, Kliche S. TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras. J Immunol. 2010;185:3536–43.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Stone J. Regulation and function of the RasGRP family of Ras activators in blood cells. Genes Cancer. 2011;2(3):320–34.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Vassiliou GS, Cooper JL, Rad R, Li J, Rice S, Uren A, Rad L, Ellis P, Andrews R, Banerjee R, et al. Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nat Genet. 2011;43:470–5.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • John J. Priatel
    • 1
    Email author
  • Kevin Tsai
    • 1
  • Kenneth W. Harder
    • 2
  1. 1.Department of Pathology and Laboratory Medicine, Child and Family Research InstituteUniversity of British ColumbiaVancouverCanada
  2. 2.Department of Microbiology and Immunology, Life Sciences InstituteUniversity of British ColumbiaVancouverCanada