Skip to main content

Tumor Protein D52 (TPD52)

  • Reference work entry
  • First Online:
  • 243 Accesses

Synonyms

CRHSP-28 (rat); CSPP28 (rabbit); hD52 (human); mD52 (mouse); N8 (human); PC-1 (human); PrLZ (human); R10 (quail); Tpd52 (mouse)

Historical Background

Mammalian TPD52 sequences were first described in the mid-1990s, through a number of independent reports and experimental approaches. Publications from 1995 to 1996 identified TPD52 sequences through the detection of increased TPD52 transcript levels in human cancer tissue or cell lines, relative to nonmalignant controls. Orthologous rat, rabbit, or quail transcripts were identified as either encoding proteins that are phosphorylated in response to raised intracellular calcium levels or as a retroviral target gene, respectively. Early reports also identified paralogous human and mouse transcript sequences, and these reports, combined with genome sequencing, demonstrated that TPD52 is one gene within a four-member gene family (reviewed by Boutros et al. 2004; Byrne et al. 2014). While TPD52-like protein sequences are conserved...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Boutros R, Fanayan S, Shehata M, Byrne JA. The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun. 2004;325:1115–21.

    Article  PubMed  CAS  Google Scholar 

  • Byrne JA, Frost S, Chen Y, Bright RK. Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? Tumour Biol. 2014;35:7369–82. doi:10.1007/s13277-014-2006-x.

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Kamili A, Hardy JR, Groblewski GE, Khanna KK, Byrne JA. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083–97. doi:10.4161/cc.26146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dawson SJ, Rueda OM, Aparicio S, Caldas C. A new genome-driven integrated classification of breast cancer and its implications. EMBO J. 2013;32:617–28. doi:10.1038/emboj.2013.19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 2015;6:35183–201. doi:10.18632/oncotarget.5930.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goto Y, Nishikawa R, Kojima S, Chiyomaru T, Enokida H, Inoguchi S, et al. Tumour-suppressive microRNA-224 inhibits cancer cell migration and invasion via targeting oncogenic TPD52 in prostate cancer. FEBS Lett. 2014;588:1973–82. doi:10.1016/j.febslet.2014.04.020.

    Article  PubMed  CAS  Google Scholar 

  • Han G, Fan M, Zhang X. microRNA-218 inhibits prostate cancer cell growth and promotes apoptosis by repressing TPD52 expression. Biochem Biophys Res Commun. 2015;456:804–9. doi:10.1016/j.bbrc.2014.12.026.

    Article  PubMed  CAS  Google Scholar 

  • Kamili A, Roslan N, Frost S, Cantrill LC, Wang D, Della-Franca A, et al. TPD52 expression increases neutral lipid storage within cultured cells. J Cell Sci. 2015;128:3223–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumamoto T, Seki N, Mataki H, Mizuno K, Kamikawaji K, Samukawa T, et al. Regulation of TPD52 by antitumor microRNA-218 suppresses cancer cell migration and invasion in lung squamous cell carcinoma. Int J Oncol. 2016;49:1870–80. doi:10.3892/ijo.2016.3690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Yao L, Zhang J, Li X, Dang S, Zeng K, et al. Tumor-suppressive microRNA-34a inhibits breast cancer cell migration and invasion via targeting oncogenic TPD52. Tumour Biol. 2016;37:7481–91. doi:10.1007/s13277-015-4623-4.

    Article  PubMed  CAS  Google Scholar 

  • Marcotte R, Sayad A, Brown KR, Sanchez-Garcia F, Reimand J, Haider M, et al. Functional genomic landscape of human breast cancer drivers, vulnerabilities, and resistance. Cell. 2016;164:293–309. doi:10.1016/j.cell.2015.11.062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mataki H, Seki N, Mizuno K, Nohata N, Kamikawaji K, Kumamoto T, et al. Dual-strand tumor-suppressor microRNA-145 (miR-145-5p and miR-145-3p) coordinately targeted MTDH in lung squamous cell carcinoma. Oncotarget. 2016;7:72084–98. doi: 10.18632/oncotarget.12290.

    Google Scholar 

  • Moritz T, Venz S, Junker H, Kreuz S, Walther R, Zimmermann U. Isoform 1 of TPD52 (PC-1) promotes neuroendocrine transdifferentiation in prostate cancer cells. Tumour Biol. 2016;37:10435–46. doi:10.1007/s13277-016-4925-1.

    Article  PubMed  CAS  Google Scholar 

  • Okato A, Goto Y, Kurozumi A, Kato M, Kojima S, Matsushita R, et al. Direct regulation of LAMP1 by tumor-suppressive microRNA-320a in prostate cancer. Int J Oncol. 2016;49:111–22. doi:10.3892/ijo.2016.3522.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ross-Adams H, Lamb AD, Dunning MJ, Halim S, Lindberg J, Massie CM, et al. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: a discovery and validation cohort study. EBioMedicine. 2015;2:1133–44. doi:10.1016/j.ebiom.2015.07.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shang ZF, Wei Q, Yu L, Huang F, Xiao BB, Wang H, et al. Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget. 2016;7:62340–51. doi:10.18632/oncotarget.11470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shehata M, Weidenhofer J, Thamotharampillai K, Hardy JR, Byrne JA. Tumor protein D52 overexpression and gene amplification in cancers from a mosaic of microarrays. Crit Rev Oncog. 2008;14:33–55.

    Article  PubMed  Google Scholar 

  • Wang J, Zhang H, Zhang X, Wang P, Wang H, Huang F, et al. PC-1 works in conjunction with E3 ligase CHIP to regulate androgen receptor stability and activity. Oncotarget. 2016;7:81377–88. doi: 10.18632/oncotarget.13230.

    Google Scholar 

  • Wu R, Wang H, Wang J, Wang P, Huang F, Xie B, et al. EphA3, induced by PC-1/PrLZ, contributes to the malignant progression of prostate cancer. Oncol Rep. 2014;32:2657–65. doi:10.3892/or.2014.3482.

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Shang ZF, Wang J, Wang H, Huang F, Zhang Z, et al. PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability. Oncotarget. 2015;6:20356–69.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Byrne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, Y., Byrne, J.A. (2018). Tumor Protein D52 (TPD52). In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101930

Download citation

Publish with us

Policies and ethics