Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

Ubiquitin Carboxyl-Terminal Hydrolase CYLD

  • Ramin MassoumiEmail author
  • Hengning Ke
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101927


Historical Background

CYLD is a deubiquitination enzyme that is responsible for cleaving polyubiquitin chains from multiple target proteins and for regulating downstream signaling pathways. Originally, CYLD gene was discovered through positional cloning from chromosome 16q. The germ-line mutations in CYLD gene were identified in patients suffering from familial cylindromatosis, which is a skin cancer disease (Biggs et al. 1995; Bignell et al. 2000). Both copies of the gene must be inactivated to cause cylindromatosis, which is usually an inherited mutation in one copy and loss of the second copy during postnatal life. CYLD consists of 956 amino acids, 20 exons, and it is scattered over 56 kb of genomic...

This is a preview of subscription content, log in to check access.


  1. An J, Mo D, Liu H, Veena MS, Srivatsan ES, Massoumi R, et al. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappa B activation. Cancer Cell. 2008;14(5):394–407.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Biggs PJ, Wooster R, Ford D, Chapman P, Mangion J, Quirk Y, et al. Familial cylindromatosis (Turban tumor syndrome) gene localized to chromosome 16Q12-Q13 – evidence for its role as a tumor-suppressor gene. Nat Genet. 1995;11(4):441–3.PubMedCrossRefGoogle Scholar
  3. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet. 2000;25(2):160–5.PubMedCrossRefGoogle Scholar
  4. Hellerbrand C, Massoumi R. Cylindromatosis – a protective molecule against liver diseases. Med Res Rev. 2016;36(2):342–59.PubMedCrossRefGoogle Scholar
  5. Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, et al. Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKK epsilon promotes cell transformation. Mol Cell. 2009;34(4):461–72.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Kikuno N, Shiina H, Urakami S, Kawamoto K, Hirata H, Tanaka Y, et al. Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells. Int J Cancer. 2008;123(3):552–60.PubMedCrossRefGoogle Scholar
  7. Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, et al. The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module. Mol Cell. 2008;29(4):451–64.PubMedCrossRefGoogle Scholar
  8. Kuphal S, Shaw-Hallgren G, Eberl M, Karrer S, Aberger F, Bosserhoff AK, et al. GLI1-dependent transcriptional repression of CYLD in basal cell carcinoma. Oncogene. 2011;30(44):4523–30.PubMedCrossRefGoogle Scholar
  9. Massoumi R. Ubiquitin chain cleavage: CYLD at work. Trends Biochem Sci. 2010;35(7):392–9.PubMedCrossRefGoogle Scholar
  10. Massoumi R. CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol. 2011;7(2):285–97.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Massoumi R, Chmielarska K, Hennecke K, Pfeifer A, Fassler R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappa B signaling. Cell. 2006;125(4):665–77.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Massoumi R, Kuphal S, Hellerbrand C, Haas B, Wild P, Spruss T, et al. Down-regulation of CYLD expression by Snail promotes tumor progression in malignant melanoma. J Exp Med. 2009;206(1):221–32.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem. 2001;70:503–33.PubMedCrossRefGoogle Scholar
  14. Strobel P, Zettl A, Ren Z, Starostik P, Riedmiller H, Storkel S, et al. Spiradenocylindroma of the kidney: clinical and genetic findings suggesting a role of somatic mutation of the CYLD1 gene in the oncogenesis of an unusual renal neoplasm. Am J Surg Pathol. 2002;26(1):119–24.PubMedCrossRefGoogle Scholar
  15. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, et al. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Mol Cell. 2010;37(5):607–19.PubMedCrossRefGoogle Scholar
  16. Trompouki E, Tsagaratou A, Kosmidis SK, Dolle P, Qian J, Kontoyiannis DL, et al. Truncation of the catalytic domain of the cylindromatosis tumor suppressor impairs lung maturation. Neoplasia. 2009;11(5):469–76.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol. 2001;2(3):169–78.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Wickstrom SA, Masoumi KC, Khochbin S, Fassler R, Massoumi R. CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin. EMBO J. 2010;29(1):131–44.PubMedCrossRefGoogle Scholar
  19. Zhang J, Stirling B, Temmerman ST, Ma CA, Fuss IJ, Derry JMJ, et al. Impaired regulation of NF-kappa B and increased susceptibility to colitis-associated tumorigenesis in CYLD-deficient mice. J Clin Investig. 2006;116(11):3042–9.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Zhong S, Fields CR, Su N, Pan YX, Robertson KD. Pharmacologic inhibition of epigenetic modi. cations, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene. 2007;26(18):2621–34.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Molecular Tumor Pathology, Translational Cancer ResearchLund UniversityLundSweden