Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

UBA2 (Ubiquitin-Like Modifier-Activating Enzyme 2)

  • Fernando Fernández-RamírezEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101918


Historical Background

Posttranslational modification of eukaryotic cellular proteins with small ubiquitin-like modifier (SUMO) proteins, i.e., sumoylation (GO: 0016925), has a variety of functional effects, including the modification of protein structure and the regulation of the intracellular or intranuclear localization, among others. In this manner, sumoylation contributes to the regulation of signal transduction pathways and gene expression systems related to the cell cycle control, apoptosis, cell differentiation, and the stress response, among others (Saitoh and Hinchey 2000; Johnson 2004; Schulman and Harper 2009).

Ubiquitin and ubiquitin-like protein conjugation requires the sequential action of three enzymatic activities (namely E1, E2, and E3) that...

This is a preview of subscription content, log in to check access.


  1. Ciechanover A, Elias S, Heller H, Hershko A. “Covalent affinity” purification of ubiquitin-activating enzyme. J Biol Chem. 1982;257:2537–42.PubMedPubMedCentralGoogle Scholar
  2. Dieckhoff P, Bolte M, Sancak Y, Braus GH, Irniger S. Smt3/SUMO and Ubc9 are required for efficient APC/C-mediated proteolysis in budding yeast. Mol Microbiol. 2004;51:1375–87.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Dohmen RJ. SUMO protein modification. Biochim Biophys Acta. 2004;1695:113–31.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Hatfield PM, Vierstra RD. Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis. J Biol Chem. 1992;267:14799–803.PubMedPubMedCentralGoogle Scholar
  5. Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002;419:135–41.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem. 2001;276:40263–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM, et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science. 2012;335:348–53.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Licciardello MP, Müllner MK, Dürnberger G, Kerzendorfer C, Boidol B, Trefzer C, et al. NOTCH1 activation in breast cancer confers sensitivity to inhibition of SUMOylation. Oncogene. 2015;34:3780–90.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Liu X, Xu Y, Pang Z, Guo F, Qin Q, Yin T, et al. Knockdown of SUMO-activating enzyme subunit 2 (SAE2) suppresses cancer malignancy and enhances chemotherapy sensitivity in small cell lung cancer. J Hematol Oncol. 2015;8:67.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Maguire SL, Peck B, Wai PT, Campbell J, Barker H, Gulati A, et al. Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model. J Pathol. 2016;240:315–28.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun. 1999;254:693–8.PubMedCrossRefGoogle Scholar
  13. Poleshko A, Kossenkov AV, Shalginskikh N, Pecherskaya A, Einarson MB, Marie Skalka A, Katz RA. Human factors and pathways essential for mediating epigenetic gene silencing. Epigenetics. 2014;9:1280–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin- related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000;275:6252–8.PubMedCrossRefGoogle Scholar
  15. Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 2009;10:319–31.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Schwienhorst I, Johnson ES, Dohmen RJ. SUMO conjugation and deconjugation. Mol Gen Genet. 2000;263:771–86.PubMedCrossRefGoogle Scholar
  17. Truong K, Lee TD, Chen Y. Small ubiquitin-like modifier (SUMO) modification of E1 Cys domain inhibits E1 Cys domain enzymatic activity. J Biol Chem. 2012;287:15154–63.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Tu J, Chen Y, Cai L, Xu C, Zhang Y, Chen Y, et al. Functional proteomics study reveals SUMOylation of TFII-I is involved in liver cancer cell proliferation. J Proteome Res. 2015;14:2385–97.PubMedCrossRefGoogle Scholar
  19. Venegas-Vega C, Nieto-Martínez K, Martínez-Herrera A, Gómez-Laguna L, Berumen J, Cervantes A, et al. 19q13.11 microdeletion concomitant with ins(2;19)(p25.3;q13.1q13.4)dn in a boy: potential role of UBA2 in the associated phenotype. Mol Cytogenet. 2014;7:61.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Yamamoto H, Ihara M, Matsuura Y, Kikuchi A. Sumoylation is involved in beta-catenin-dependent activation of Tcf-4. EMBO J. 2003;22:2047–59.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Systems Laboratory, Genetics UnitHospital General de MéxicoMéxico CityMéxico