Encyclopedia of Signaling Molecules

2018 Edition
| Editors: Sangdun Choi

RAB Family

  • Zsuzsanna SzatmáriEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-3-319-67199-4_101912


Historical Background and Introduction

RAB proteins are evolutionarily highly conserved monomeric small GTP-binding proteins, which form the largest branch within the RAS superfamily. The first RAB gene Sec4/Ypt (yeast protein transcript) was identified more than 30 years ago and later described as the gene of a small G protein having essential function in vesicle trafficking between the Golgi apparatus and the plasma membrane (Gallwitz et al. 1983). Only a few years later, the first mammalian family members were cloned and named as RAB (Ras-like in rat brain) proteins (Touchot et al. 1987). In humans, more than 70 different RAB and RAB-like proteins have been characterized so far, and the protein family has also numerous members in all the well-known model organisms (11 in Saccharomyces cerevisiae, 29 in Caenorhabditis elegans, 33 in Drosophila melanogaster, and 57 in Arabidopsis thaliana). All RAB family proteins...

This is a preview of subscription content, log in to check access.


  1. Bhuin T, Roy JK. Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res. 2014;328:1–19. doi:10.1016/j.yexcr.2014.07.027.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Cooper A, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313(5785):324–8. doi:10.1126/science.1129462.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Corbeel L, Freson K. Rab proteins and Rab-associated proteins: major actors in the mechanism of protein-trafficking disorders. Eur J Pediatr. 2008;167(7):723–9. doi:10.1007/s00431-008-0740-z.CrossRefPubMedPubMedCentralGoogle Scholar
  4. del Toro D, Alberch J, Lázaro-Diéguez F, Martín-Ibáñez R, Xifró X, Egea G, et al. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol Biol Cell. 2009;20(5):1478–92. doi:10.1091/mbc.E08-07-0726.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Gallwitz D, Donath C, Sander C. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature. 1983;306(5944):704–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Goldenring JR. A central role for vesicle trafficking in epithelial neoplasia: intracellular highways to carcinogenesis. Nat Rev Cancer. 2013;13(11):813–20. doi:10.1038/nrc3601.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Gomes AQ, Ali BR, Ramalho JS, Godfrey RF, Barral DC, Hume AN, et al. Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol Biol Cell. 2003;14(5):1882–99. doi:10.1091/mbc.E02-10-0639.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91(1):119–49. doi:10.1152/physrev.00059.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Li X, Sapp E, Chase K, Comer-Tierney LA, Masso N, Alexander J, et al. Disruption of Rab11 activity in a knock-in mouse model of Huntington’s disease. Neurobiol Dis. 2009;36(2):374–83. 10.1016/j.nbd.2009.08.003PubMedPubMedCentralCrossRefGoogle Scholar
  10. Pfeffer SR. Structural clues to rab GTPase functional diversity. J Biol Chem. 2005;280:15485–8. doi:10.1074/jbc.R500003200.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell. 2010;141(3):497–508. doi:10.1016/j.cell.2010.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10(8):513–25. doi:10.1038/nrm2728.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Stenmark H, Valencia A, Martinez O, Ullrich O, Goud B, Zerial M. Distinct structural elements of rab5 define its functional specificity. EMBO J. 1994;13(3):575–83.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Szatmári Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy. 2014;10(7):1154–66. doi:10.4161/auto.29395.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Touchot N, Chardin P, Tavitian A. Four additional members of the ras gene superfamily isolated by an oligonucleotide strategy: molecular cloning of YPT-related cDNAs from a rat brain library. Proc Natl Acad Sci U S A. 1987;84(23):8210–4.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Winslow AR, Chen C, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, et al. α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol. 2010;190(6):1023–37. doi:10.1083/jcb.201003122.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Anatomy, Cell and Developmental BiologyEotvos Lorand UniversityBudapestHungary