Skip to main content

Task

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 299 Accesses

Synonyms

TASK1: KCNK3, K2p3.1, OAT1, PPH4, TASK-1, TBAK1, Potassium two-pore-domain channel subfamily K member 3; TASK3: KCNK9, K2p9.1, KT3.2, TASK-3, Potassium two-pore-domain channel subfamily K member 9

Historical Background

Based on the structural features, K+ channels are classified into the voltage-gated K+ channels, Ca2+-dependent K+ channels, and leak K+ (two-pore-domain K+) channels (Fig. 1). The voltage-gated K+ channels and Ca2+-dependent K+ channels form tetramers, with each subunit containing six or seven transmembrane domains and one pore domain while leak K+ (two-pore-domain K+) channels form dimers, with each subunit containing four transmembrane domains and two pore domains (Goldstein et al. 2001; Bayliss et al. 2003). In excitable cells, a negative membrane potential is critical for electrical signaling, and it has long been considered that this key mechanism is largely mediated by leak K+ currents (Goldman 1943). However, the molecular basis for characterizing...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayliss DA, Barrett PQ. Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci. 2008;29:566–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayliss DA, Sirois JE, Talley EM. The TASK family: two-pore domain background K+ channels. Mol Interv. 2003;3:205–19.

    Article  PubMed  CAS  Google Scholar 

  • Berg AP, Talley EM, Manger JP, Bayliss DA. Motoneurons express heteromeric TWIK-related acid-sensitive K+ (TASK) channels containing TASK-1 (KCNK3) and TASK-3 (KCNK9) subunits. J Neurosci. 2004;24:6693–702.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brickley SG, Aller MI, Sandu C, Veale EL, Alder FG, Sambi H, et al. TASK-3 two-pore domain potassium channels enable sustained high-frequency firing in cerebellar granule neurons. J Neurosci. 2007;27:9329–40. https://doi.org/10.1523/JNEUROSCI.1427-07.2007.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen X, Talley EM, Patel N, Gomis A, McIntire WE, Dong B, et al. Inhibition of a background potassium channel by Gq protein α-subunits. Proc Natl Acad Sci USA. 2006;103:3422–7. https://doi.org/10.1073/pnas.0507710103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi Y, Yoon YW, Na HS, Kim SH, Chung JM. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain. 1994;59:369–76.

    Article  CAS  Google Scholar 

  • Clarke CE, Veale EL, Wyse K, Vandenberg JI, Mathie A. The M1P1 loop of TASK3 K2P channels apposes the selectivity filter and influences channel function. J Biol Chem. 2008;283:16985–92. https://doi.org/10.1074/jbc.M801368200.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G, Enyedi P. Formation of functional heterodimers between the TASK-1 and TASK-3 two-pore domain potassium channel subunits. J Biol Chem. 2002;277:5426–32.

    Article  PubMed  CAS  Google Scholar 

  • Czirjak G, Fischer T, Spat A, Lesage F, Enyedi P. TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol. 2000;14:863–74. https://doi.org/10.1210/mend.14.6.0466.

    Article  PubMed  CAS  Google Scholar 

  • Dobler T, Springauf A, Tovornik S, Weber M, Schmitt A, Sedlmeier R, et al. TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol. 2007;585:867–79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J. 1997;16:5464–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enyedi P, Czirjak G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev. 2010;90:559–605. https://doi.org/10.1152/physrev.00029.2009.

    Article  CAS  PubMed  Google Scholar 

  • Fong GC, Shah PU, Gee MN, Serratosa JM, Castroviejo IP, Khan S, et al. Childhood absence epilepsy with tonic-clonic seizures and electroencephalogram 3-4-Hz spike and multispike-slow wave complexes: linkage to chromosome 8q24. Am J Hum Genet. 1998;63:1117–29. https://doi.org/10.1086/302066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldman DE. Potential, impedance, and rectification in membranes. J Gen Physiol. 1943;27:37–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goldstein SA, Bockenhauer D, O’Kelly I, Zilberberg N. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci. 2001;2:175–84.

    Article  PubMed  CAS  Google Scholar 

  • Holter J, Carter D, Leresche N, Crunelli V, Vincent P. A TASK3 channel (KCNK9) mutation in a genetic model of absence epilepsy. J Mol Neurosci. 2005;25:37–51. https://doi.org/10.1385/JMN:25:1:037.

    Article  PubMed  CAS  Google Scholar 

  • Kananura C, Sander T, Rajan S, Preisig-Muller R, Grzeschik KH, Daut J, et al. Tandem pore domain K+-channel TASK-3 (KCNK9) and idiopathic absence epilepsies. Am J Med Genet. 2002;114:227–9. https://doi.org/10.1002/ajmg.10201.

    Article  PubMed  Google Scholar 

  • Kang D, Han J, Talley EM, Bayliss DA, Kim D. Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. J Physiol. 2004;554:64–77.

    Article  PubMed  CAS  Google Scholar 

  • Karschin C, Wischmeyer E, Preisig-Muller R, Rajan S, Derst C, Grzeschik KH, et al. Expression pattern in brain of TASK-1, TASK-3, and a tandem pore domain K+ channel subunit, TASK-5, associated with the central auditory nervous system. Mol Cell Neurosci. 2001;18:632–48.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Gnatenco C. TASK-5, a new member of the tandem-pore K+ channel family. Biochem Biophys Res Commun. 2001;284:923–30. https://doi.org/10.1006/bbrc.2001.5064.

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Kim D. TBAK-1 and TASK-1, two-pore K+ channel subunits: kinetic properties and expression in rat heart. Am J Phys. 1999;277:H1669–78.

    CAS  Google Scholar 

  • Kim Y, Bang H, Kim D. TASK-3, a new member of the tandem pore K+ channel family. J Biol Chem. 2000;275:9340–7.

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Kim JE, Kwak SE, Choi HC, Song HK, Kimg YI, et al. Up-regulated astroglial TWIK-related acid-sensitive K+ channel-1 (TASK-1) in the hippocampus of seizure-sensitive gerbils: a target of anti-epileptic drugs. Brain Res. 2007;1185:346–58. https://doi.org/10.1016/j.brainres.2007.09.043.

    Article  PubMed  CAS  Google Scholar 

  • Kim D, Cavanaugh EJ, Kim I, Carroll JL. Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells. J Physiol. 2009;587:2963–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272:1013–6.

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I, Zanzouri M, Honore E, Duprat F, Ehrengruber MU, Lazdunski M, et al. K+-dependent cerebellar granule neuron apoptosis. Role of task leak K+ channels. J Biol Chem. 2003;278:32068–76. https://doi.org/10.1074/jbc.M302631200.

    Article  PubMed  CAS  Google Scholar 

  • Lazarenko RM, Willcox SC, Shu S, Berg AP, Jevtovic-Todorovic V, Talley EM, et al. Motoneuronal TASK channels contribute to immobilizing effects of inhalational general anesthetics. J Neurosci. 2010;30:7691–704. https://doi.org/10.1523/JNEUROSCI.1655-10.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lesage F. Pharmacology of neuronal background potassium channels. Neuropharmacol. 2003;44:1–7.

    Article  CAS  Google Scholar 

  • Linden AM, Aller MI, Leppa E, Vekovischeva O, Aitta-Aho T, Veale EL, et al. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther. 2006;317:615–26. https://doi.org/10.1124/jpet.105.098525.

    Article  PubMed  CAS  Google Scholar 

  • Linden AM, Sandu C, Aller MI, Vekovischeva OY, Rosenberg PH, Wisden W, et al. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther. 2007;323:924–34. https://doi.org/10.1124/jpet.107.129544.

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Cotten JF, Schuyler JA, Fahlman CS, Au JD, Bickler PE, et al. Protective effects of TASK-3 (KCNK9) and related 2P K channels during cellular stress. Brain Res. 2005;1031:164–73. https://doi.org/10.1016/j.brainres.2004.10.029.

    Article  PubMed  CAS  Google Scholar 

  • Lopes CM, Rohacs T, Czirjak G, Balla T, Enyedi P, Logothetis DE. PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+ channels. J Physiol. 2005;564:117–29. https://doi.org/10.1113/jphysiol.2004.081935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marsh B, Acosta C, Djouhri L, Lawson SN. Leak K+ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci. 2012;49:375–86.

    Article  PubMed  CAS  Google Scholar 

  • Meuth SG, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, et al. The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis. 2009;33:1–11. https://doi.org/10.1016/j.nbd.2008.09.006.

    Article  PubMed  CAS  Google Scholar 

  • Millar JA, Barratt L, Southan AP, Page KM, Fyffe RE, Robertson B, et al. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. Proc Natl Acad Sci USA. 2000;97:3614–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morenilla-Palao C, Luis E, Fernandez-Pena C, Quintero E, Weaver JL, Bayliss DA, et al. Ion channel profile of TRPM8 cold receptors reveals a role of TASK-3 potassium channels in thermosensation. Cell Rep. 2014;8:1571–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhammad S, Aller MI, Maser-Gluth C, Schwaninger M, Wisden W. Expression of the kcnk3 potassium channel gene lessens the injury from cerebral ischemia, most likely by a general influence on blood pressure. Neuroscience. 2010;167:758–64. https://doi.org/10.1016/j.neuroscience.2010.02.024.

    Article  PubMed  CAS  Google Scholar 

  • Mutch WA, Hansen AJ. Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cereb Blood Flow Metab. 1984;4:17–27. https://doi.org/10.1038/jcbfm.1984.3.

    Article  PubMed  CAS  Google Scholar 

  • Rajan S, Wischmeyer E, Xin Liu G, Preisig-Muller R, Daut J, Karschin A, et al. TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem. 2000;275:16650–7.

    Article  PubMed  CAS  Google Scholar 

  • Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, et al. Cloning and expression of a novel pH-sensitive two pore domain K+ channel from human kidney. J Biol Chem. 1998;273:30863–9.

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA. CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci. 2001;21:7491–505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsodyks M. Spike-timing-dependent synaptic plasticity – the long road towards understanding neuronal mechanisms of learning and memory. Trends Neurosci. 2002;25:599–600. https://doi.org/10.1016/S0166-2236(02)02294-4.

    Article  PubMed  CAS  Google Scholar 

  • Wasterlain CG, Fujikawa DG, Penix L, Sankar R. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia. 1993;34(Suppl 1):S37–53.

    Article  PubMed  Google Scholar 

  • Wilke BU, Lindner M, Greifenberg L, Albus A, Kronimus Y, Bunemann M, et al. Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors. Nat Commun. 2014;5:5540.

    Article  PubMed  CAS  Google Scholar 

  • Xiong ZQ, Stringer JL. Extracellular pH responses in CA1 and the dentate gyrus during electrical stimulation, seizure discharges, and spreading depression. J Neurophysiol. 2000;83:3519–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Toyoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Toyoda, H. (2018). Task. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101910

Download citation

Publish with us

Policies and ethics